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1 Introduction
The main task of mechanics is the integration of the equations of motion (i.e. solving for the motion

of particles as a function of time). Solving Newton’s equations of motion is generally a hard problem, as
the equations are coupled and non-linear. Standard approaches for solving the differential equations do not
always work well. By recasting mechanics in a new framework, mathematicians and scientists have developed
an extraordinarily powerful “tool set” to tackle problems in mechanics.

The purpose of this thesis is to investigate the mathematical tools needed to write mechanics in a
more convenient and powerful form. These tools also find applications in the numerical study of mechanical
systems, namely through numerical methods known as symplectic integrators. Unlike “standard” ODE initial
value problem numerical methods, symplectic integrators are designed to respect some of the properties of
exact solutions to equations of motion. Symplectic integrators have been used to study the motion of the
outer planets of our Solar System over very large time spans [14].

1.1 Newtonian Mechanics
In Newtonian mechanics one studies the dynamics of a system of point masses by analyzing the forces

acting on the masses in the system. The motions of particles are completely determined by a system of
second-order ordinary differential equations and the positions and velocities of the particles at some given
time; this is called Newton’s principle of determinacy and is part of the foundation of classical mechanics
[3]. The differential equations that describe the motion of the system, generically called the equations of
motion, are determined by the forces on the system.

Let xi, ẋi = dxi/dt, and ẍi = d2xi/dt
2 be vectors of the positions, velocities, and accelerations of the ith

particle in a mechanical system in R3. In general, for particles of unit mass, Newton’s equations of motion
are

ẍi = Fi(x1, ...,xN , ẋ1, ..., ẋN , t), (1.1)

where Fi is the familiar vector of forces on the ith particle. The form of F is experimentally determined
and verified; we consider F as defining the mechanical system. If there are N particles in the system, we
require 6N initial conditions (3N initial positions and 3N initial velocities) to solve Newton’s 3N second-
order equations of motion.

As an example, take the three-body problem, which is the study of the motion of three bodies interacting
via Newton’s law of universal gravitation. Newton’s nine equations of motion are

m1ẍ1 = − ∂

∂x1
U(x1,x2,x3)

m2ẍ2 = − ∂

∂x2
U(x1,x2,x3)

m3ẍ3 = − ∂

∂x3
U(x1,x2,x3),

where the potential, which describes the forces between the particles, is

U(x1,x2,x3) = − Gm2m3

||x2 − x3||
− Gm3m1

||x3 − x1||
− Gm1m2

||x1 − x2||
,

and mi is the mass of the ith particle and G is Newton’s universal gravitational constant. If a force on a
particle can be written as the gradient of a scalar function, that force is said to be conservative and the
scalar function a potential. In our studies of mechanical systems, we consider only conservative forces.
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2 Vectors and Differential Forms
The goal of this section is to briefly describe manifolds, tangent vectors, and differential forms. For

the reader who is “a bit rusty”, this section will hopefully be a welcome refresher; readers that are already
familiar with manifolds, differential forms, and the like need not spend their time reading this section. For
a complete, formal treatment of these topics, the reader is recommended to Frankel [7].

2.1 Differentiable Manifolds
An n-dimensional differentiable manifold Mn is a topological space that is locally homeomorphic

to Rn with differentiable overlap maps fV U . More formally, the set Mn must be covered by subsets
(Mn = U ∪ V ∪ ...) that are each in a 1 : 1 correspondence φU : U → Rn to an open subset φU (U) of Rn.
Intersections of subsets U and V must also correspond to an open subset of Rn. Finally, the overlap map

fV U = φV ◦ φ−1
U : φU (U ∩ V ) → φV (U ∩ V ),

must be differentiable. Note that both φU (U ∩ V ) and φV (U ∩ V ) are subsets of Rn.

A subset U with a map φU give us a coordinate patch (U, φU ) on the manifold Mn; the map
φ−1
U : Rn → U gives us coordinates xi

U on the manifold. The differentiability of the overlap map fV U = φV ◦ φ−1
U

allows us to smoothly transfer between coordinate patches. Instead of specifying with which coordinate patch
and the associated coordinates we are working, we often denote xi as “local coordinates” on Mn. Most
importantly, the differentiable manifold structure allows us to do calculus on objects described solely on the
manifold. Differentiable manifolds form the foundation of the more powerful methods of classical mechanics.

As an example of a differentiable manifold, let us take the case of a mechanical system with N particles
in R3. In Newtonian mechanics, we track the positions xi of the particles. Perhaps there are some constraints
on the system that force the positions xi to be restrained to a sphere. Then the set of all particle coordinates
does not span all of R3N . Also, we cannot have two particles at the same point in space at the same time
(this is known as a singularity). In any case, the set of all possible positions of the particles in a mechanical
system describe an n-dimensional, differentiable manifold. This set of all the possible positions of particles
in the system is called the configuration space of the mechanical system.

The configuration space, denoted Mn, describes every possible configuration of the system. Any possible
set of positions of the particles is a point in Mn. The positions xi of the particles in the mechanical system
are really 3-tuples of coordinates on the configuration space (at least in our 1+3 dimensional universe). Since
one could describe equivalently the motion of each particle with respect to Cartesian coordinates, spherical
coordinates, etc., we generally call the positions of particles generalized coordinates. We denote the ith

generalized coordinate by qi.

Remark: When working with a general manifold that is not necessarily related to a mechanical system,
we use coordinates denoted xi. When the manifold is the configuration space, we denote the coordinates by
qi (this is a common convention in the study of mechanics). In both the case of a general n-dimensional
manifold and an n-dimensional configuration space, we denote the manifold by Mn.
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2.2 Vectors
Consider a differentiable manifold Mn. We can form a curve (a one-parameter, connected subset of

points) γ = γ(t) ∈ Mn. In some coordinate patch (U, φU ) with coordinates xi
U in a neighborhood of γ(0),

the curve is given by n component functions xi = xi(t) such that γ(t) = (x1(t), ..., xn(t)). The “velocity
vector” γ̇(0) of the curve at the point γ(0) has components

γ̇(0) =

(
dx1

dt

∣∣∣∣
t=0

, ...,
dxn

dt

∣∣∣∣
t=0

)
.

Suppose that the curve γ is described in another coordinate patch (V, φV ) with coordinates xi
V in a

neighborhood of the point γ(0): γ(t) = (y1(t), ..., yn(t)); the curve should be the same object in both
coordinate systems, although it might have different component functions. By applying the chain rule to
the overlap map taking coordinates in U to coordinates in V , we can find the components of the “velocity
vector” γ̇(0) in the coordinate patch (V, φV ):

dyi

dt

∣∣∣∣
t=0

=

n∑
j=1

∂xi
V

∂xj
U

∣∣∣∣
γ(0)

dxj

dt

∣∣∣∣
t=0

Here ∂xi
V /∂x

j
U is the (i, j) component of the Jacobian of the transition function between (V, φV ) and (U, φU );

the Jacobian is evaluated at the point γ(0). In order to compute this Jacobian, we must know that the
derivatives exist and are continuous; this differentiability is exactly the assumed differentiability of the
overlap map from Section 2.1.

Physical laws should be coordinate independent. We should be able to freely transfer from the (U, φU )
coordinate patch to the (V, φV ) coordinate patch; the results of any calculations should be independent of
the coordinate patch we used. Whenever a definition is made using a coordinate system, it must always be
shown that the definition is coordinate independent. Coordinate independence can be shown by showing
that the structure transforms linearly (e.g. like the “velocity vector”), or by defining the structure without
the use of coordinates. Since the “velocity vector” of a curve transforms in a linear manner, we can more
rigorously define a vector.

Definition 2.1: A (tangent) vector X at a point x ∈ Mn is an n-tuple of real numbers

(X1
U , ..., X

n
U )

in some coordinate patch (U, φU ) with coordinates xi
U containing the point x. If x ∈ U ∩V , then components

of the vector must transform to coordinates xi
V in the following manner:

Xi
V =

n∑
j=1

∂xi
V

∂xj
U

∣∣∣∣
x

Xj
U . (2.1)

Notice that (2.1) is exactly a change of basis for the vector X. Any coordinate system on Mn naturally
defines a basis for vectors.

Definition 2.2: The tangent space to Mn at some point x ∈ Mn, denoted TMn
x , is the real vector space

consisting of all the vectors X based at the point x. TMn
x is an n-dimensional differentiable manifold.

The vector space operations act on the components of vectors just like the operations in the vector space
Rn. Note that these operations are not defined for vectors from tangent spaces over different points! We
break this rule and add vectors located at different points all the time when we the base manifold is Rn. We
can add vectors from different tangent spaces when Mn = Rn only because the tangent spaces to Rn are
the same at each point of Rn. For a general differentiable manifold, however, the tangent spaces at different
points are different.
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Suppose we have some function f = f(x1
U , ..., x

n
U ) on the manifold Mn in some coordinate patch (U, φU ).

We could then look at the derivative of f along the curve γ(t) evaluated at t = 0. This derivative is

df

dt

∣∣∣∣
t=0

=

n∑
j=1

∂f

∂xj
U

∣∣∣∣
γ(0)

dxj

dt

∣∣∣∣
t=0

.

Consider a first-order, linear, differential operator X with components Xj
U such that

X =

n∑
j=1

Xj
U

∂

∂xj
U

∣∣∣∣
γ(0)

.

The derivative of f along γ can be expressed as

X(f) =

n∑
j=1

Xj
U

∂f

∂xj
U

∣∣∣∣
γ(0)

,

where we choose Xj
U = dxj/dt. It can be shown that this first-order, linear, differential operator transforms

between coordinate patches exactly like a vector. Thus, vectors are in a 1 : 1 correspondence with first-order,
linear, differential operators. It is quite usual to ignore the distinction; we usually write vectors as

X =

n∑
j=1

Xj
U

∂

∂xj
U

∣∣∣∣
γ(0)

.

It is also quite common to drop the subscripts reminding us of the coordinate patch we are using; the
notation might re-appear if we need to show how an object transforms between coordinates (primes might
also be used). Since vectors are always defined at a point, it is also common to drop the notation that
reminds us where derivatives are evaluated at. With these conventions, vectors take the form

X =
n∑

j=1

Xj ∂

∂xj
. (2.2)

Remark: Another common notational convenience (that has already been used!) is the use of bold glyphs to
represent an n-tuple of quantities. An example we’ve already seen quite a bit of is the point x ∈ Mn. This
quantity is, of course, an n-tuple of the values of the coordinate functions at that point. We will use indexed
and/or bold quantities in this paper whenever convenient.

The local coordinates xi form a natural basis, also called frame, for the tangent space TMn
x :(

∂

∂x1
, ...,

∂

∂xn

)
.

Recall that these operators act at the point x. In the vector space Rn, we (improperly) add vectors based
from different points; this works only because TRn

x = Rn is the same at every point. On a general manifold,
the operation of addition of vectors from two different tangent spaces cannot be done as the vectors exist
at different points on the manifold and the tangent spaces are not generally the same at each point; the
notation describing at which point a differential operator acts makes this clear, but we have dropped this
notation for convenience.

2.3 Lagrangian Mechanics
A mechanical system consisting of N particles has an n-dimensional configuration space Mn whose

elements contain every possible position of the particles in the system (no singularities, however). The
configuration space has the structure of a differentiable manifold. If we know Newton’s equations of motion,
we can use those same coordinates to introduce coordinate patches on Mn. Coordinates on the configuration
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space are typically denoted qi.

Since Newton’s equations of motion give us differentiable motion, we expect that the trajectories of the
particles in the system give us a corresponding differentiable curve on Mn. The tangent vector q̇ to the
curve (at some point) has components that are the components of the instantaneous generalized velocities.
A generalized velocity does not have to correspond to the velocity in “x” direction. A common generalized
coordinate/velocity pair is angle/angular velocity, which of course has a physical meaning.

With the notion of the tangent space, we can now say that the generalized velocities of particles in the
system, grouped together as (q̇1, ..., q̇n) in the coordinates qi, form a vector q̇ ∈ TMn

x , where Mn is the
configuration space. We then have a generalized velocity vector along each point in the trajectory of the
system.

On a general manifold Mn, we have tangent spaces TMn
x at every point x ∈ Mn. Instead of being

restricted to vectors at a single point, we would like to have a vector field, which would be a single object
that defines a vector at each point of Mn. A vector field should intrinsically group every tangent space TMn

x

together; thus, we have the following definition.

Definition 2.3: The tangent bundle TMn of Mn is the union of all the tangent spaces TMn
x , x ∈ Mn:

TMn =
⋃

x∈Mn

TMn
x .

If xi are some local coordinates on Mn, the ∂/∂xi form a local basis of TMn
x , and Xi are the components

a vector X ∈ TMn
x . The (x1, ..., xn, X1, ..., Xn) then form a set of 2n local coordinates on TMn. We also

have a projection map π : TMn → Mn that picks off the coordinates (x1, ..., xn). The tangent bundle TMn

is naturally a 2n-dimensional differentiable manifold.

Remark: There is much more structure to the tangent bundle, but we don’t need it for this paper.

The notion of a vector field can now be expressed in terms of the tangent bundle. A vector field
X : Mn → TMn is a map from the manifold to the tangent bundle. At each point x ∈ Mn, the vector
field X defines a vector in the tangent space TMn

x . Thus, at each point in the manifold, a vector field is a
vector, just as we wanted.

In a Lagrangian mechanical system, we construct a function L : TMn → R that gives us equations
of motion that are compatible with Newton’s equations of motion. If Newton’s equations of motion (in
Cartesian coordinates) are of the form

d

dt
(mixi) = − ∂

∂xi
U,

then the Lagrangian function of the system is of the form L = T − U , where T is the kinetic energy and U
is the potential energy of the system. A motion of the system γ(t) is a curve on the configuration space Mn

given by the solution of the equations of motion of the system. Hamilton’s principle of least action states
that the motion of the system γ(t) is the extremal that minimizes the action functional

S[γ] =

∫ t1

t0

L dt.

If the motion γ(t) and Lagrangian function L = L(q, q̇) are expressed in local coordinates qi, then the
coordinates evolve with time via the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (2.3)

The Euler-Lagrange equations of motion are, in essence, nothing more than a generalization of Newton’s
equations of motion. They are found by constructing a variational principle that is consistent with Newton’s
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equations of motion.

By considering particle motion as motion on the configuration space and introducing the Lagrangian
function L, we have described the dynamical system in terms of the tangent bundle TMn instead of just Mn.
The methods in Lagrangian mechanics are quite powerful, but are not the focus of this paper. Hamiltonian
mechanics is, in a sense, the “dual” of Lagrangian mechanics; the goals are the same, but the structure is
different. Instead of using (only) the language of vectors, Hamiltonian mechanics is written in the language
of differential forms.

2.4 Differential 1-Forms
Recall that any vector X ∈ TMn

x is in a 1 : 1 correspondence with a first-order, linear differential operator.
In some local coordinates xi on Mn, X acts on a function f : Mn → R and returns a real number:

X(f) =

n∑
i=1

Xi ∂f

∂xi
. (2.4)

In a calculus class, one may have studied the total derivative of a function of multiple variables; given
f(x1, ..., xn), the total derivative is

df =

n∑
i=1

∂f

∂xi
dxi =

∂f

∂x1
dx1 + ...+

∂f

∂xn
dxn. (2.5)

With the exception of the components of the vector in (2.4), the total derivative (2.5) has a similar action
on f . It is possible to relate the two objects in a coordinate invariant manner.

Definition 2.4: The differential of some function f : Mn → R at a point x ∈ Mn, is the linear functional
df : TMn

x → R defined by

df(X) = X(f). (2.6)

This definition does not utilize a coordinate patch on Mn. This definition is then “automatically” coordinate
invariant. If we were to define df in terms of some coordinates, coordinate invariance must be shown in order
that df be well defined.

The differential of f at a point is a map that takes a vector and returns a real number. If xi are local
coordinates for Mn, then

df =

n∑
i=1

∂f

∂xi
dxi.

is a proposed form for df . With this form, the left-hand side of (2.6) is

df(X) =

n∑
i=1

∂f

∂xi
dxi

 n∑
j=1

Xj ∂

∂xj

 .

The “dual vector” dxi is a linear functional that acts on the natural basis vectors ∂/∂xj of the local coordinate
system xi via

dxi

(
∂

∂xj

)
= δij ,

where δij is the Kronecker delta symbol:

δij =

{
1 i = j
0 i 6= j

.
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Using the linearity of the dxi, we can write (2.6) in coordinates as

df(X) =

n∑
i=1

∂f

∂xi

n∑
j=1

Xjδij =

n∑
i=1

Xi ∂f

∂xi
= X(f).

In coordinates xi, the set of vectors of the form ∂/∂xi form a basis for the tangent space at a point. The
dxi are linear functionals that act on the basis vectors ∂/∂xi and return a Kronecker delta symbol. The dxi

form a basis for the “dual” of the tangent space at a point.

Definition 2.5: The dual space of a real vector space V is the real vector space V ∗ whose elements are
linear functionals α : V → R on the vector space V . Linearity gives us the following property:

α(aX+ bY) = aα(X) + bα(Y) X,Y ∈ V, α ∈ V ∗, a, b ∈ R.

Vector addition and scalar multiplication in V ∗ are

(α+ β)(X) = α(X) + β(X) X ∈ V, α, β ∈ V ∗

(cα)(X) = cα(X) X ∈ V, α ∈ V ∗, c ∈ R.

The dual space to TMn
x is a vector space, so we can form dual vectors α as linear combinations of the dual

basis vectors dxi. We can choose the coefficients of the dual vector at x ∈ Mn to be those of a differential
evaluated at x. In fact, we can choose any real coefficients we like.

Definition 2.6: A differential 1-form, 1-form, or covector α1 at a point x ∈ Mn is an n-tuple of real
numbers

(aU1 , ..., a
U
n )

in some coordinate patch (U, φU ) with coordinates xi
U containing x. If x ∈ U ∩ V , then components of the

differential 1-form must transform to coordinates xi
V in the following manner:

aVi =

n∑
j=1

∂xi
U

∂xj
V

∣∣∣∣
x

aUj . (2.7)

In some local coordinate system xi on Mn, α1 can be expressed in the dual basis dxi as

α1 =

n∑
i=1

aidx
i. (2.8)

The linear combination (2.8) is the most general 1-form. Note that the superscript 1 on α1 is not a
coordinate or component index, but a reminder that α1 is a 1-form (later on, we will see how to join 1-forms
together to build higher-order differential forms).

Since we use the dual of TMn
x quite frequently, we will give it a special name.

Definition 2.7: The cotangent space T ∗Mn
x at a point x ∈ Mn is the dual space to the tangent space

TMn
x . Just as vectors at x are elements of TMn

x , differential 1-forms α1 at x are elements of the cotangent
space: α1 ∈ T ∗Mn

x . In some local coordinates xi for Mn, the dual vectors dxi form a basis of the dual space
T ∗Mn

x . The union of all of the cotangent spaces over all points in the manifold form the cotangent bundle

T ∗Mn =
⋃

x∈Mn

T ∗Mn
x .

If α1 ∈ T ∗Mn
x is given by components ai in some local coordinates xi, then local coordinates on T ∗Mn

are
(
x1, ..., xn, a1, ..., an

)
. We also have a projection map π : T ∗Mn → Mn that picks off the coordinates

(x1, ..., xn). Just like the tangent space TMn
x and tangent bundle TMn, the cotangent space T ∗Mn

x is an
n-dimensional differentiable manifold and the cotangent bundle T ∗Mn is a 2n-dimensional differentiable
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manifold.

As one might expect, this “local product” structure of T ∗Mn is very similar to TMn. Just like the
tangent bundle TMn, the cotangent bundle T ∗Mn has a lot of structure that we will not need for our
purposes. However, the cotangent bundle plays a crucial role in the formulation of Hamiltonian mechanics.
It is in this context that we will study the cotangent bundle in further detail in the next few sections.

2.5 Exterior Product of Differential Forms
It turns out that we can extend the idea of the differential of functions to derivatives of 1-forms. In this

generalization, we think of functions as 0-forms, and this derivative would take 0-forms to 1-forms, so that it
is consistent with the differential. In fact, this derivative is based on the differential of 0-forms. The extension
of the differential requires a product structure that allows us to build higher degree forms. Although this
product structure can be generalized to more than just differential forms, we will consider only the case of
differential forms.

As a start, this product should take two 1-forms and give back what we will call a “2-form”. The “2-
form”, let us denote it ω2, will thus be built of two 1-forms, will take two vectors as arguments, and will
return a scalar. This “2-form” ω2 (at some point x ∈ Mn) is a mapping

ω2 : TMn
x × TMn

x → R,

where the superscript 2 on ω2 reminds us that ω2 is a “2-form”.

Definition 2.8: A k-form is a k-linear, skew-symmetric functional of k vectors Xi ∈ TMn
x

ωk : TMn
x × ...× TMn

x︸ ︷︷ ︸
k copies

→ R.

The k-linearity of ωk is

ωk(aX′
1 + bX′′

1 ,X2, ...,Xk) = aωk(X′
1,X2, ...,Xk) + bωk(X′′

1 ,X2, ...,Xk),

for the first argument. The remaining arguments are also linear. The skew-symmetry of ωk is

ωk(Xi1 , ...,Xik) = (−1)νωk(X1, ...,Xk),

where

ν =

{
0 if the permutation (i1, ..., ik) is even
1 if the permutation (i1, ..., ik) is odd

If we apply ωp a linearly dependent set of vectors (e.g. X1,X1,X2, ...,Xik−1
), we must have ωp(X1,X1,X2, ...,Xik−1

) = 0.

As both an example of a higher degree form and an introduction to the product structure for differential
forms, we now present a special case of the product structure.

9



Definition 2.9: The exterior product, or Grassman product of two 1-forms α1, β1 ∈ T ∗Mn
x is the

quantity

ω2 = α1 ∧ β1,

where ∧ is also called the wedge product. If X,Y ∈ TMn
x ,

ω2(X,Y) = α1(X)β1(Y)− α1(Y)β1(X).

This “product of monomials” has some nice properties:

Theorem 2.1: The product ω2 = α1 ∧ β1, where α1, β1 ∈ T ∗Mn
x , has the following properties:

• ω2 is a 2-form (2-linear and antisymmetric)

• distributivity:
(
α1 + β1

)
∧ γ1 = α1 ∧ γ1 + β1 ∧ γ1 a, b ∈ R

• associativity:
(
α1 ∧ β1

)
∧ γ1 = α1 ∧

(
β1 ∧ γ1

)
Note that the product of 1-forms is anticommutative:

α1 ∧ β1 = −β1 ∧ α1,

which implies

α1 ∧ α1 = 0 ∀α1 ∈ T ∗Mn
x .

From the exterior product of 1-forms, we can build up any k-form we like. If the xi are a local coordinate
system on Mn, then the dxi form a natural basis for T ∗Mn

x for any x in the coordinate patch. A k-form ωk

in the coordinates xi is of the form

ωk =
∑

i1,...,ik

ai1,...,ikdx
i1 ∧ ... ∧ dxik ,

where the ai1,...,ik are the components of ωk. We also know that the basic forms dxi1 ∧ ...∧dxik form a basis
for the k-forms on T ∗Mn

x .

From the skew-commutativity and associativity of the exterior product, we know that there are(
n

k

)
=

n!

k!(n− k)!

basis k-forms. Thus, all of the k-forms with k > n are identically zero.

The exterior product of a k-form and a l-form is now given.

Definition 2.10: The exterior product, or Grassman product of a k-form ωk and a l-form ωl is the
(k + l)-form ωk ∧ ωl whose value on the vectors X1, ...,Xk+l ∈ TMn

x is

ωk ∧ ωl(X1, ...,Xk+l) =
∑

(−1)νωk(Xi1 , ...,Xik)ω
l(Xj1 , ...,Xjl), (2.9)

where i1 < ... < ik, j1 < ... < jl, and

ν =

{
0 if the permutation (i1, ..., ik, j1, ..., jl) is even
1 if the permutation (i1, ..., ik, j1, ..., jl) is odd .
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Again, we have skew-commutativity, distributivity, and associativity:

ωk ∧ ωl = (−1)klωl ∧ ωk(
aωk + bρk

)
∧ ωl = aωk ∧ ωl + bρk ∧ ωl a, b ∈ R(

ωk ∧ ωl
)
∧ ωr = ωk ∧

(
ωl ∧ ωr

)
.

In the case of the exterior product of two 1-forms α1 and β1, the factor (−1)ν puts the action of the
product α1 ∧ β1 on two vectors into the form the determinant of a 2 × 2 matrix. This generalizes to the
case of the exterior product of a k-form and an l-form, where we would be taking the determinant of a
(k + l) × (k + l) matrix. It should be noted that we do not always think of the exterior product in terms
of determinants; the properties of the exterior product allow us to work with higher degree forms without
relying on their action of a set of vectors.

In Hamiltonian mechanics, the exterior product is used quite frequently. There is a 2-form that naturally
appears on the configuration space of a mechanical system and is based on the momenta and generalized
coordinates of the particles in the mechanical system. We will see what this 2-form is in Section 3.2.

2.6 Exterior Derivative of Differential Forms
Now that we can construct k-forms, we can generalize the differential of 0-forms (i.e. functions). In local

coordinates xi, a 1-form α1 ∈ T ∗M can be expressed as

α1 =

n∑
i=1

aidx
i,

where the ai are functions of the xi since α1 ∈ T ∗Mn. The ai can really be though of as 0-forms, and with
the exterior product,

α1 =

n∑
j=1

ai ∧ dxi.

We do not usually write the ∧ when we take the exterior product of a 0-form with another form, even though
that is actually what is being done. We know how to take differentials of 0-forms (functions), and we know
how to take exterior products; thus, we can generalize the differential.

Definition 2.11: The exterior derivative d is the unique operator that takes k-forms to k+1-forms and
satisfies

• d is additive: d(αk + βk) = dαk + dβk

• dα0 is the usual differential of the function α0

• d(αk ∧ βl) = dαk ∧ βl + (−1)kαk ∧ dβl

• d2(αk) = d
(
dαk

)
= 0 for all αk

For some k-form in local coordinates xi, where the basic forms dxi1 ∧ ... ∧ dxik form a basis for T ∗Mn
x ,

the k-form can be expressed as

αk =
∑

ai1,...,ikdx
i1 ∧ ... ∧ dxik .

In those same local coordinates,

dαk =
∑

dai1,...,ik ∧ dxi1 ∧ ... ∧ dxik . (2.10)

11



The properties of d can be shown to be coordinate independent, and the form of dαk in Equation (2.10) is
well defined. When changing coordinates, each dxik changes according to the transformation (2.7).

Definition 2.12: A differential k-form αk is called closed if dαk = 0. A differential k-form βk is called
exact if there exists a differential (k − 1)-form ωk−1 such that dωk−1 = βk.

Every exact k-form is closed, since ωk = dωk−1 =⇒ dωk = d2ωk−1 = 0. However, not every closed k-form
is exact, since one cannot always find αk−1 such that dαk−1 = ωk.

A differential 1-form α1 is exact if there exists a function f : Mn → R such that df = α1; this is analogous
to a vector field in R3 being the gradient of some function. It turns out that we can write every bit of vector
analysis in R3, in any coordinate system, very efficiently in the language of differential forms.

Thus far, we have encountered a lot more structure for differential forms than for vectors. This is not
an accident! There is a substantial amount of structure that comes from using differential forms. Every
differentiable manifold has a cotangent bundle and thus a vector space of differential forms at every point;
this includes the configuration space of a mechanical system. As we will see in the next few sections, working
with covector fields (like vector fields, covector fields define a differential form at every point on the manifold)
can be much “nicer” than working with vector fields.

2.7 Flows
When we defined vectors X ∈ TMn

x in Section 2.2, we considered “velocity vectors” of curves on Mn.
Instead of constructing a curve through x ∈ Mn, we can smoothly map Mn into itself and construct vectors
from this mapping.

Definition 2.13: A diffeomorphism g : Mn → Nn is a mapping of the n-dimensional differentiable
manifold Mn to the n-dimensional differentiable manifold Nn such that both g and g−1 are differentiable
mappings. A differentiable mapping takes coordinates on Mn and maps them to coordinates on Nn in a
differentiable manner.

In a mechanical system, we express the position of the particles by generalized coordinates q =
(
q1, ..., qn

)
.

The equations of motion of the system tell us how the positions q evolve with time. From this, we constructed
curves that allowed us to define generalized velocity vectors. We would like to consider the evolution of q
forward in time by some amount τ as being a diffeomorphism gτ : Mn → Mn. There is nothing special about
our choice of τ ; we would like to be able to pick any τ ∈ R, as it would move our coordinates q forward or
backward in time. These “flows” of points would then completely describe the evolution of the mechanical
system.

Definition 2.14: A one-parameter group of transformations is a family of mappings {gt} that map
a set M into itself and is indexed by t ∈ R such that

gs+t = gsgt ∀s, t ∈ R,

and g0 is the identity mapping that leaves every element of M fixed.

Due to the commutativity of the group (R,+), we know that a one-parameter group of transformations must
be commutative.

In the context of a mechanical system, a certain one-parameter group of transformations of the configuration
space Mn moves the generalized coordinates of the particles forward (or backward) in time according to
the equations of motion. From Newton’s principle of determinacy (see Section 1.1), we know that motions
of a mechanical system are deterministic. Therefore, the description of the motion of a mechanical system
by a one-parameter (commutative) group of transformations of the configuration space is consistent with
Newton’s principle of determinacy.

12



Remark: Later on, we will see exactly how these groups of transformations are related to our new, first-
order equations of motion, and more generally, systems of first-order ordinary differential equations. Arnold
gives a geometric treatment of the theory of first-order ODE in [2], in which Arnold spends a great deal of
time working with flows, as they are in a 1 : 1 correspondence with first-order systems of ODE.

For a mechanical system obeying some differential equations of motion, the group of transformations of
the configuration space should also be a differentiable mapping.

Definition 2.15: A one-parameter group of diffeomorphisms, or (phase) flow is a one-parameter
group of transformations {gt} of a manifold Mn:

g : R×Mn → Mn g(t,x) = gtx t ∈ R, x ∈ Mn.

The mapping g : R×Mn → Mn is a differentiable mapping (but not a diffeomorphism). The mapping
gt : Mn → Mn is a diffeomorphism for each t ∈ R. The inverse mapping (gt)

−1 is g−t.

Remark: In other texts the flow is denoted (Mn, gt). The distinction is that the flow is always given in
terms of the manifold that the mapping acts on. For notational convenience, we commonly denote a flow
{gt} by an element gt of the flow.

Let gt : Mn → Mn be an element of a one-parameter group of diffeomorphisms of Mn. We can define a
curve γ going through some point x as being the set of image points gtx where t ∈ R:

γ(t) = gtx x ∈ Mn, t ∈ R.

Also note that γ(0) = g0x = x exactly as before. From this, we get an equivalent definition of a vector
X ∈ TMn

x :

X =
d

dt

∣∣∣∣
t=0

(
gtx
)
. (2.11)

From this, we can see that the correspondence between vector fields X and flows gt is one-to-one, and flows
are in a one-to-one correspondence with first-order, linear, differential operators.

2.8 Push-forwards and Pull-backs
A flow gt takes points x ∈ Mn to points y ∈ Mn in a differentiable manner. We can define a vector

X ∈ TMn
x and a vector Y ∈ TMn

y using the flow gt and (2.11). It turns out that a curve defined by gt that
connects x and y with velocity vector X at x and velocity vector Y at y is unique. It turns out that we can
construct a mapping between TMn

x and TMn
y using the flow gt.

Instead of constructing a mapping between tangent spaces of the same manifold, we can “do one better”.
If we have a differentiable mapping between a manifold Mn and another manifold Nr, we can construct a
mapping from tangent spaces TMn

x to tangent spaces TNr
f(x); this will, of course, work for the case where

Mn = Nr.

Definition 2.16: The differential of the differentiable mapping f : Mn → Nr, or push-forward at a
point x ∈ Mn is the linear mapping of the tangent spaces

f∗x : TMn
x → TNr

f(x).

If xi are coordinates for Mn in a coordinate patch containing x and ym are coordinates in a coordinate patch
containing f(x), then the linear transformation f∗x is given by the Jacobian ∂ym/∂xi.
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Remark: One must be careful with the push-forward: Let f : Mn → Nr and X ∈ TMn. It is very well
possible that, under the map f , two points x,x′ ∈ Mn get mapped to the same point y ∈ Nr. The vector
field X at some point x is denoted X(x).

The push-forward takes X(x) to f∗xX(x) and X(x′) to f∗x′X(x′). But these two new vectors are based over
the same point y = f(x) = f(x′). Thus, the push-forward does not take vector fields to vector fields, even
though it maps tangent spaces to tangent spaces! We can fix this by instead mapping differential forms.

If X ∈ TMn
x , n = r, and f is 1 : 1 (so f−1 exists locally), then the differential map f∗x takes X to a

vector Y ∈ TNr
f(x) given by the components

Y m =

n∑
i=1

∂ym

∂xi
Xi m = 1, ..., r. (2.12)

The assumptions on the dimension of Nr and the 1 : 1 nature of f allow us to map vectors to vectors. We
could just as easily construct the differential map of elements of a flow; then the conditions n = r and the
1 : 1 nature of the map are satisfied (since gt is a diffeomorphism for all t ∈ R). These mappings would then
map tangent spaces of Mn to other tangent spaces of Mn. Further, we can construct a mapping between
tangent bundles:

f∗X = f∗xX for X ∈ TMn
x ,

where f∗x : TMn
x → TNr

f(x) and f∗ : TMn → TNr. We have the following commutative diagram for the
push-forward:

TMn TNr

Mn Nr

f∗

πM πN

f

Recall that πM and πN are the projection mappings for the tangent bundles TMn and TNr, respectively
(see Section 2.3).

There also a way of mapping cotangent spaces of Mn to cotangent spaces of Nr.

Definition 2.17: Let f : Mn → Nr be a differentiable map, x ∈ Mn, y = f(x) ∈ Nr, and f∗x : TMn
x → TNr

f(x)

be the differential of f at x. The pull-back f∗
f(x) is the linear transformation taking T ∗Nr

f(x) to T ∗Mn
x

defined by

f∗
f(x)(α

1)(X) = α1(f∗xX) (2.13)

for all 1-forms α1 ∈ T ∗Nr
f(x) and vectors X ∈ TMn

x .

In some coordinates xi on Mn in a coordinate patch containing x and coordinates yi on Nr in a coordinate
patch containing f(x), we can write down the components of f∗

f(x)α
1 in terms of the components of α1. Let

α1 =

r∑
m=1

amdym,

and β1 = f∗
f(x)α

1 with components bi such that

β1 =

n∑
i=1

bidx
i.
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Under the pull-back, the components of α1 transform as

bi =

r∑
m=1

∂ym

∂xi
am. (2.14)

Most of the time, we write the pull-back of a differential form α as f∗α, where we drop the notation
reminding us which cotangent space α is from. Similarly, we usually write the push-forward as f∗. These
operations are defined for the cotangent bundle and tangent bundle respectively. In exactly the same manner
as the differential for the tangent bundle, we can construct the pull-back for the cotangent bundle T ∗Nr,
and we have the commutative diagram:

T ∗Mn T ∗Nr

Mn Nr

πM πN

f

f∗

We can also pull-back higher degree forms:

f∗(αk)(X1, ...,Xk) = αk(f∗X1, ..., f∗Xk).

The pull-back of higher degree forms is crucial in integration of forms over manifolds; the interested reader
is recommended to read Frankel [7].

Remark: The major difference between the push-forward and the pull-back, besides mapping vectors and
covectors (1-forms), is that the pull-back of a covector field is always defined! This is one of the most
attractive features of working with differential forms, especially since we do not have this property for the
push-forward of vector fields.

The pull-back of differential forms can be used to develop integration of differential forms over differentiable
manifolds. We already know how to compute integrals of functions over oriented subsets (U, o) ⊂ Rn:∫

(U,o)

u(x1, ..., xn)dx1 ∧ ... ∧ dxn = o(x)

∫
U

u(x1, ..., xn)dx1...dxn,

where o = o(x) = ±1 is +1 if the orientation of the coordinate basis(
∂

∂x1
, ...,

∂

∂xn

)
matches the orientation of o. If we have a mapping f : U → Mn, we can use the pull-back of this map to
define the integral of differential forms over subsets of Mn. The following is just a sketch of what can be
done. For a more rigorous, complete treatment of the integration of differential forms, see Frankel [7].

Define an oriented, parameterized k-subset of a manifold Mn as the pair (U, o; f) where (U, o) is an
oriented subset of Rk and

f : U → Mn

is a differentiable map. In the case k = 1, we have a curve on Mn with a specific parameterization. In any
case, the push-forward f∗ might take a vector field and map it to the zero vector at a point (we can call
this “rank deficient”); such a point is called a singular point. It turns out that in most important cases, the
push-forward f∗ has “rank” k “almost everywhere”.
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We can define the integral of some k-form field αk on Mn, defined in coordinate patches covering f(U),
over the oriented, parameterized k-subset (U, o; f) as∫

(U,o;f)

αk =

∫
(U,o)

f∗αk.

If we have another map φ : Mn → Nr, we can map the k-subset (U, o; f) to a k-subset (U, o;φ ◦ f) of Nr.
If we let σ = (U, o; f) and φ(σ) = (U, o;φ ◦ f), then the above definition of the integral of a k-form can be
generalized. If ωk is a k-form on Nr, we can pull ωk back to Mn and compute the integral:∫

φ(σ)

ωk =

∫
σ

φ∗ωk.

Finally, we state Stokes’s Theorem. It highlights the structure that has been developed for differential
forms.

Stokes’s Theorem: Let V k ⊂ Mn be a compact, oriented submanifold of Mn with boundary ∂V k ⊂ Mn.
If ωk−1 is a (k − 1)-form on Mn, then ∫

∂V k

ωk−1 =

∫
V k

dωk−1.

In the case k = 1, Stokes’s Theorem simplifies to the Fundamental Theorem(s) of calculus!

By now, we hope the reader is sufficiently comfortable with vector fields and differential forms on
manifolds. For much more detail and formality, the reader is recommended to Frankel [7]. In the following
section on Hamiltonian mechanics, the “language” of vector fields and differential forms is quite prevalent.
In Newtonian mechanics, the geometry underlying the problem is not always apparent; this is most definitely
not the case in Hamiltonian mechanics.
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3 Hamiltonian Mechanics
Hamiltonian mechanics is geometry in phase space − V.I. Arnold [3].

3.1 Hamilton’s Equations of Motion
In Section 2.3 we briefly explained how Lagrangian mechanics can be developed from Newtonian mechanics.

Consider the configuration space Mn of some mechanical system. In Lagrangian mechanics, one constructs
the Lagrangian L : TMn → R such that

L = T − V,

where T is the total kinetic energy and V is the total potential energy. Hamilton’s principle of least action
states the motion γ of a mechanical system in configuration spaces minimizes the action functional

S[γ] =

∫ t1

t0

L dt.

In general L = L(q, q̇, t), where the qi are generalized coordinates on Mn and q =
(
q1, ..., qn

)
. Note

that we treat q and q̇ as 2n independent variables. If we consider a motion of the system, then we will have
q = q(t) and q̇ = dq/dt will be determined from that motion; until we have defined the motion, however,
we treat q and q̇ as being independent.

In the autonomous case where L = L(q, q̇), a necessary condition for the motion γ of a Lagrangian
mechanical system to minimize the action functional S is that the generalized coordinates evolve according
to the n second-order Euler-Lagrange equations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (3.1)

The Euler-Lagrange equations are the equations of motion in Lagrangian mechanics. Note that derivatives
with respect to a bold quantity represent a “gradient” operation: ∂L/∂q denotes the n equations ∂L/∂qi.
Even if we have holonomic constraints and/or a non-autonomous Lagrangian, the appropriate Euler-Lagrange
equations are still a necessary condition for the motion γ to minimize the action functional S.

A natural mechanical system is one where the total kinetic energy of the system is given as a quadratic
form of the generalized velocities q̇i:

T =
1

2

n∑
i=1

n∑
j=1

aij(q
1, ..., qn)q̇iq̇j .

As the reader might know from experience, quadratic kinetic energy terms appear quite frequently in our
models of nature. For mechanical systems that are natural in Cartesian coordinates, the momentum of
the ith particle is given by pi = ∂L/∂q̇i. For simple systems in Cartesian coordinates, the Euler-Lagrange
equations are exactly Newton’s equations of motion; this is expected since Lagrangian mechanics is designed
to be equivalent to Newtonian mechanics.

For any Lagrangian mechanical system, we can define the generalized momentum p(q, q̇) as

p =
∂L

∂q̇
. (3.2)

We assume that this mapping is a diffeomorphism, so that the inverse exists (for the conditions required to
invert this mapping, see Section 4.4 in [7]). In local coordinates qi, (3.2) is

pi =
∂L

∂q̇i
,
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where pi is the generalized momentum corresponding to the ith generalized velocity qi. The reader should
note that each generalized momentum pi is given a subscripted index, which is how we denote components of a
differential 1-form. Let us see why this is by determining how the pi transform to another coordinate system.

Let Qi = Qi(q1, ..., qn) be another set of local coordinates on Mn. Then Q̇i are the components of the
coordinate basis vectors in the Qi coordinates and are given by

Q̇i =

n∑
j=1

∂Qi

∂qj
q̇j . (3.3)

The reader may want to check that this agrees with the transformation (2.1). We can write the Lagrangian
L, assumed to be autonomous, in either coordinate system: L = L(q, q̇) = L(Q, Q̇). The generalized
momentum Pi is given by the chain rule:

Pi =
∂L

∂Q̇i
=

n∑
j=1

[
∂L

∂qj
∂qj

∂Q̇i
+

∂L

∂q̇j
∂q̇j

∂Q̇i

]
.

We consider the coordinates q as being independent of the generalized velocities q̇ (in any coordinate
system). This means that

∂qj

∂Q̇i
= 0.

From the vector transformation rule (3.3), we have

∂q̇j

∂Q̇i
=

∂qj

∂Qi
,

so that

Pi =
n∑

j=1

∂qj

∂Qi
pi. (3.4)

Thus, the generalized momenta p are the components of a differential 1-form field, which is an element of the
cotangent bundle T ∗Mn! The definition given by (3.2) is really a mapping p : TMn → T ∗Mn that gives us
the components pi. In the context of a mechanical system, the cotangent bundle of the configuration space
is called the phase space, and is given by the local coordinates (q1, ..., qn, p1, ..., pn). The Euler-Lagrange
equations give us equations of motion in terms of q and q̇ that are equivalent to Newton’s equations of
motion. What are the equations of motion of the mechanical system in terms of q and p that are equivalent
to the Euler-Lagrange equations of motion?

Theorem 3.1: Lagrange’s equations of motion (3.1) in TMn transform to Hamilton’s equations of
motion in T ∗Mn

ṗ = −∂H

∂q
q̇ =

∂H

∂p
, (3.5)

where the Hamiltonian is defined by

H(q,p, t) = pq̇− L(q, q̇, t). (3.6)

The generalized velocities q̇ are written in terms of q and p using the inverse of (3.2) (The Hamiltonian
H(q,p, t) = pq̇ − L(q, q̇, t) is the Legendre transform of the Lagrangian L(q, q̇, t) viewed as a function of
q̇).
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Proof: Since we assumed that the mapping p : TMn → T ∗Mn given by (3.2) was a diffeomorphism,
the inverse mapping exists and is a differentiable mapping. Locally, we can write the generalized
velocities as q̇ = q̇(q,p).

The total derivative of H must be the same when H = H(q,p, t) and when H = H(q, q̇, t). In the
first case, we have

dH =
∂H

∂p
dp+

∂H

∂q
dq+

∂H

∂t
dt.

In the second case, we have

d (pq̇− L(q, q̇, t)) = q̇ dp− ∂L

∂q
dq− ∂L

∂t
dt.

Both expressions for dH must be equivalent, and so we have

q̇ =
∂H

∂p
− ∂L

∂q
=

∂H

∂q
− ∂L

∂t
=

∂H

∂t
.

From the Euler-Lagrange equations (3.1), we know ṗ = ∂L/∂q, and we have Hamilton’s equations
of motion:

ṗ = −∂H

∂q
q̇ =

∂H

∂p

∂H

∂t
= −∂L

∂t

Lagrange’s equations of motion (3.1) are equivalent to Hamilton’s equations of motion (3.5). Disregarding
any complexities in transforming the Lagrangian into the Hamiltonian, we have complete freedom to choose
which equations of motion we want to solve. Due to the geometry of the cotangent bundle (e.g. we can
always pull back forms), Hamiltonian mechanics allows us to find complete solutions to problems that do
not yield solutions by other means, such as Lagrangian and Newtonian mechanics.

3.2 Symplectic Manifolds
As we just saw, we can rewrite the n second-order equations of motion in Lagrangian mechanics as a

system of 2n first-order equations of motion using coordinates on the phase space. The second n-tuple of
coordinates on the phase space is given by the components pi = ∂L/∂q̇i of a 1-form. On the phase space,
there exists a structure, analogous to a Riemannian metric, that gives us an isomorphism between tangent
spaces and cotangent spaces. As we will see, this isomorphism relates phase flows on T ∗Mn with functions
on T ∗Mn, and (naturally) gives us Hamilton’s equations of motion in terms of the geometry of the phase
space!

Definition 3.1: Let M2n be an even-dimensional differentiable manifold. A symplectic structure on M2n

is a closed, non-degenerate differential 2-form ω2 on M2n:

dω2 = 0

∀X ∈ TM2n
x ∃Y ∈ TM2n

x s.t. ω2(X,Y) 6= 0.

The pair (M2n, ω2) is called a symplectic manifold.

The word symplectic comes from an Ancient Greek σνµπλεκτικóς, which translates, roughly, to “braided
together” (think of how Hamilton’s equations of motion (3.5) are “braided together”). The introduction of
the term symplectic into mathematics is attributed to Herman Weyl.
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Theorem 3.2: The cotangent space T ∗Mn of an n-dimensional differentiable manifold Mn has a natural
symplectic structure. In local coordinates (x1, ..., xn, a1, ..., an) on T ∗Mn, this structure can be written as

ω2 =

n∑
i=1

dai ∧ dxi. (3.7)

Recall that the phase space T ∗Mn of a mechanical system is a 2n-dimensional differentiable manifold.
The phase space can be given local coordinates (q1, ..., qn, p1, ..., pn), where the qi are generalized coordinates
and the pi are generalized momenta. By Theorem 3.2, the phase space of a mechanical system is a symplectic
manifold.

In Arnold’s proof of Theorem 3.2, it is shown that ω2 = dω1, where ω1 = a dx. This guarantees that
ω2 is closed [3]. In the context of a mechanical system, ω1 = p dq is called the Poincaré 1-form; the
symplectic structure of the phase space is occasionally called the Poincaré 2-form.

The reader who is familiar with Riemannian geometry may recall that the Riemannian metric induces an
isomorphism between the tangent and cotangent spaces of the manifold. The symplectic structure induces
a similar isomorphism on symplectic manifolds.

Definition 3.2: To each vector X tangent to a symplectic manifold (M2n, ω2) at a point x, there is a 1-
form ω1

X associated to X by

ω1
X(Y) = ω2(Y,X) ∀Y ∈ TM2n

x .

This association induces an isomorphism between TM2n
x and T ∗M2n

x . Due to its role in taking total
derivatives of functions to vector fields, we usually use the isomorphism I : T ∗M2n → TM2n. If we let H be
a function on M2n, the isomorphism I takes dH to a vector field I dH on M2n.

Definition 3.3: The vector field I dH on M2n is called a Hamiltonian vector field; the function H is
called a Hamiltonian function.

By computing dH and mapping it to a Hamiltonian vector field I dH, we can associate H to a phase
flow with elements gt defined by

d

dt

∣∣∣∣
t=0

gtx = I dH(x),

where the group of elements gt is called a Hamiltonian phase flow with Hamiltonian function H.

In the case of a mechanical system, the symplectic manifold is (T ∗Mn, ω2). The Hamiltonian function H
is found from the Lagrangian function L. The phase flow gt of a mechanical system is exactly the solution to
Hamilton’s equations of motion (3.5), which are in a 1 : 1 correspondence with the Hamiltonian vector field
I dH. Note that the phase space T ∗Mn does not include time t as a coordinate; we must have ∂H/∂t = 0.
The non-autonomous case will be handled in the next subsection.

3.3 Canonical Transformations
Hamiltonian functions define a one-parameter group of diffeomorphisms (phase flows) of symplectic

manifolds (notably the phase space of a mechanical system). How do flows change a symplectic manifold?

Definition 3.4: Let g : M2n → M2n be a differentiable mapping. A differential p-form ωp is an (absolute)
integral invariant of the map g if ∫

gσ

ωp =

∫
σ

ωp,

for any oriented, parameterized p-subset σ of M2n.
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The following theorems highlight some of the beautiful structure that comes from the cotangent bundle.

Theorem 3.3: A p-form ωp on M2n is an absolute integral invariant of the map g if and only if the map
preserves ωp:

g∗ωp = ωp.

Theorem 3.4: If ωp and ωq are absolute integral invariants of the map g, then

ωp ∧ ωq

is also an absolute integral invariant of g.

Theorem 3.5: A Hamiltonian phase flow gt on a symplectic manifold (M2n, ω2) preserves the symplectic
structure:

(gt)∗ω2 = ω2. (3.8)

From Theorem 3.3, we know that Theorem 3.5 is equivalent to stating that the symplectic form is an
absolute integral invariant of Hamiltonian phase flows. Note that this is true both for the case of a general
symplectic manifold and for the phase space of a mechanical system. This means that solutions to Hamilton’s
equations (i.e Hamiltonian phase flows with Hamiltonian function H) must preserve the symplectic structure.
We will deal with this fact in Section 4.

Definition 3.5: A differentiable map g : M2n → M2n is called canonical, a canonical transformation,
or a symplectomorphism if it preserves the symplectic structure.

In these terms, Theorem 3.5 states that every Hamiltonian phase flow is a canonical transformation.
However, not every canonical transformation is a Hamiltonian phase flow.

Consider a mechanical system with configuration space Mn. The phase space T ∗Mn is a 2n-dimensional
manifold. On the phase space, we can only have conservative (i.e. autonomous) Hamiltonian functions
H = H(q,p). We can, however, extend phase space to include the time parameter. Define the extended
phase space to be T ∗Mn × R. Local coordinates on the extended phase space are (q1, ..., qn, p1, ..., pn, t),
and we can now have non-autonomous Hamiltonian functions H = H(q,p, t).

By considering the 1-form ω1 = pdq −Hdt on the extended phase space M2n+1, it can be shown that
the vortex lines of ω1 are the trajectories of the phase flow given by Hamilton’s equations of motion (3.5).
Vortex lines are the integral curves of the vortex directions X ∈ TM2n+1

x given by

dω1(X,Y) = 0 ∀Y ∈ TM2n+1
x .

It turns out that dω1 is non-degenerate; dω1 is also closed, since d2ω1 = 0.

Since ω1 gives us Hamilton’s equations of motion via the vortex lines of ω1, we expect that in some new
coordinates (Q,P, T ) on M2n+1, the vortex lines of ω1 in the new coordinate patch are exactly the vortex
lines of ω1 in the original coordinates (q,p, t). In particular, we can choose T = t, so we are only changing
coordinates (q,p) → (Q,P).

Theorem 3.6: In the new coordinates (Q,P, t) on M2n+1, Hamilton’s equations of motion (3.5) have the
same form:

Ṗ = −∂K

∂Q
Q̇ =

∂K

∂P
,

where K(Q,P, t) = H(q,p, t). Note that the time derivatives are with respect to t.
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If the transformation g : (q,p) → (Q,P) is canonical, then the form of the equations of motion is
preserved. This gives us quite a bit of freedom in how we can solve problems. There are a number
of techniques for generating canonical coordinate transformations that result in a more easily integrable
problem. One of the most notable methods is called the Hamilton-Jacobi method for constructing generating
functions for coordinate transformations.

3.4 Lie Algebras in Hamiltonian Mechanics
We can define a binary operation on the tangent space of a differentiable manifold that takes two vectors

and returns a vector. If the manifold is symplectic, this vector operation can be limited to Hamiltonian
vector fields and induce closure. A compatible operation can be written in terms of Hamiltonian functions
on the symplectic manifold. This new operation on Hamiltonian functions is related to conserved quantities
of a Hamiltonian mechanical system. In Section 4 we will see how this operation can be used to develop
numerical methods for approximating solutions to the equations of motion of a Hamiltonian mechanical
system.

Definition 3.6: A Lie algebra g is a vector space V together with a bilinear, skew-symmetric operation
[·, ·] : V × V → V that satisfies the Jacobi identity

[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 ∀X,Y,Z ∈ V.

The operation [·, ·] is usually called the Poisson bracket, or commutator.

Remark: One may be asking, “where is the Lie group?” The Lie group, in the case where the vectors in the
Lie algebra are Hamiltonian vector fields on (M2n, ω2), is, roughly speaking, the space of all diffeomorphisms
of the symplectic manifold. We have been regularly using elements of this Lie group, but we have not
(explicitly) needed the structure of the Lie group for our purposes thus far; it is for this reason that we do
not call the commutator a Lie bracket. The Lie group “under” the Lie algebra of Hamiltonian vector fields
will make a brief appearance in Section 4.2.

Let Mn be a differentiable manifold and TMn
x the tangent space at x ∈ Mn. We know that the tangent

space is a vector space, whose elements are the tangent vectors based at the point x. Thus, for vectors,
which we write as first-order, linear differential operators, we can define the commutator operation. Let
X,Y ∈ TMn

x be given in some coordinates xi so that X and Y are given by the components Xi and Y j ,
respectively.

The commutator of tangent vectors is defined by its action on a smooth function f :

[X,Y](f) = X(Y(f))−Y(X(f)).

At first sight, this looks like a second-order, bilinear differential operator, but upon inspection of the
components of [X,Y] it is clear that it is a first-order, bilinear differential operator. The components
of [X,Y] are

[X,Y]j =

n∑
i=1

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
. (3.9)

It is clear that the commutator operation is skew-symmetric: [X,Y] = −[Y,X]. Note that some authors,
Arnold in particular, define the commutator to be −[X,Y]. The commutator also satisfies the Jacobi identity.

Together with the commutator defined above, each tangent space TMn
p of a differentiable manifold is

a Lie algebra. In the case of a symplectic manifold, the Lie algebra of Hamiltonian vector fields is a sub-
algebra of the Lie algebra of all vector fields.
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We already know that vector fields X are related to flows gt:

d

dt

∣∣∣∣
t=0

gtx = X(x).

As the reader might suspect, the degree of commutativity of vector fields is also intimately related to the
degree of commutativity of the associated flows.

Theorem 3.7: Let X and Y be the vector fields associated to the flows gt and hs. The flows gt and hs

commute if and only if commutator [X,Y] is equal to zero.

Everything previously in this section is defined for any differentiable manifold Mn. Let us now move to
the case in which the manifold is symplectic.

Let (M2n, ω2) be a symplectic manifold. The symplectic structure allows us to determine a Hamiltonian
vector field I dH and Hamiltonian phase flow gtH from a Hamiltonian function H : M2n → R. Each element
of the flow gtH is a canonical transformation of M2n.

Definition 3.7: Let F : M2n → R be another Hamiltonian function. The Poisson bracket {F,H} is the
derivative of F in the direction of the flow of H:

{F,H}(x) = d

dt

∣∣∣∣
t=0

F (gtHx). (3.10)

The Poisson bracket {F,H} is also a function on M2n. From the definition of the Poisson bracket (3.10),
we know that F is a first integral (integral invariant) of the phase flow gtH if and only if {F,H} = 0.

If we use the isomorphism I : T ∗M2n → TM2n defined in Section 3.2, we can write the Poisson bracket
of F and H using the symplectic structure:

{F,H} = ω2(I dF, I dH).

This shows that the Poisson bracket is bilinear and skew-symmetric:

{λ1F1 + λ2F2,H} = λ1{F1,H}+ λ2{F2,H} λ1, λ2 ∈ R

{F,H} = −{H,F}.

By looking at the Hamiltonian vector fields associated to the Hamiltonian functions F , H, and G, one can
show that the Poisson bracket obeys the Jacobi identity:

{{F,H}, G}+ {{H,G}, F}+ {{G,H}, F} = 0.

Therefore, the vector space of Hamiltonian functions on a symplectic manifold (M2n, ω2) with the Poisson
bracket form a Lie algebra.

If we have two first integrals F1 and F2 of a system with Hamiltonian H, then we can construct a third,
not necessarily new, first integral {F1, F2}. From this, if we know that the first two angular momenta of a
mechanical system in R3 are conserved, then the third component must also be conserved.

Finally, let us state a generalization of Noether’s Theorem, which relates symmetries of the Lagrangian to
first integrals of the equations of motion. This generalization, which we still attribute to Noether, is instead
written in terms of a Hamiltonian system.

Noether’s Theorem: If a Hamiltonian function H on the symplectic manifold (M2n, ω2) is preserved by
the one-parameter group of canonical transformations given by a Hamiltonian function F , then F is a first
integral of the equations of motion of the mechanical system with Hamiltonian H.
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3.5 The Hamilton-Jacobi Method
The Hamilton-Jacobi method is a set of techniques for finding coordinate transformations that yield

more easily integrable equations of motion. The method relies on the fact that both the Hamiltonian
and the form of Hamilton’s equations of motion are preserved under a canonical transformation (Theorem
3.6). Therefore, if we “somehow” succeed in finding a “good” coordinate transformation, we know that the
solution to the new equations of motion satisfies the original problem.

In Section 2.3 we defined the action functional

S[γ] =

∫
γ

L dt,

where the motion of a mechanical system is the extremal γ and L is the Lagrangian function. The action
S is defined with some starting position and time (q0, t), from which we integrate following the path of the
extremal γ. It turns out that the differential of the action is

dS = p dq−H dt,

where p = ∂L/∂q̇ and H = pq̇ − L are defined with the help of the terminal velocity q̇ of the extremal γ.
From this, we arrive at the Hamilton-Jacobi equation. Note that p = ∂S/∂q.

Theorem 3.8: The action function S satisfies the single, non-linear partial differential equation

∂S

∂t
+H

(
q,

∂S

∂q
, t

)
= 0, (3.11)

with Cauchy data S(q, t0) = S0(q).

The Hamilton-Jacobi equation gives us yet another equation of motion. Our “primary” equations of
motion are still Hamilton’s equations of motion, however. We will soon see the utility of the Hamilton-
Jacobi equation for finding canonical transformations.

Suppose that the 2n functions Q(q,p) and P(q,p) define a canonical transformation g : R2n → R2n.
From Theorem 3.6, it can be shown that there exists a function S(q,p) such that

dS(q,p) = p dq−P dQ, (3.12)

is an exact differential form. Also, if the form p dq −P dQ is exact, then the transformation it induces is
canonical.

If we assume that in a neighborhood of the point (q0,p0) the Jacobian determinant

det
∂(Q,q)

∂(p,q)
= det

∂Q

∂p
6= 0

then we can take (Q,q) as independent coordinates. Such a transformation is called free. Locally S can be
expressed as

S(q,p) = S1(q,Q).

The function S1 is called a generating function of the canonical transformation g. From (3.12), we have

p =
∂S1

∂q
P = −∂S1

∂Q
. (3.13)
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As long as

det
∂2S1

∂q∂Q

∣∣∣∣
(q0,Q0)

6= 0,

S1 is a generating function for some free canonical transformation. It should be noted that a general canonical
transformation is given in terms of 2n functions of 2n variables. In the case of the generating function S1,
we can find a canonical transformation in terms of one function of 2n variables!

We now know that if we somehow construct a function S1, we can generate a canonical transformation
(with the above assumption on the determinant). However, what makes a good canonical transformation?
Clearly, we want to transform the coordinates to some where the equations of motion are easily integrated!

Notice that if H(q,p, t) = K(Q, t) depends only on Q (in the new coordinates), Hamilton’s equations
are

Ṗ = −∂K

∂Q
Q̇ = 0.

The solution is

P(t) = P(0)−
∫ t

0

∂K

∂Q

∣∣∣∣
Q(0)

dt Q(t) = Q(0).

Now we need a way of transforming (q,p) such that H(q,p, t) = K(Q, t).

Using (3.13), we want to find S(q,Q) such that

H

(
q,

∂S

∂q
, t

)
= K(Q, t), (3.14)

where the derivatives ∂S/∂q are taken and then the substitution q = q(Q,P) is made. The reader should
note the similarity of (3.14) and the Hamilton-Jacobi equation (3.11). Finally, we have the following theorem
which states that if we can find such an S, then we can completely solve the original problem.

Jacobi’s Theorem: If a solution S(q,Q) of (3.14) is found that depends on the n parameters Q such that
det ∂2S/∂q∂Q 6= 0, then Hamilton’s equations

ṗ = −∂H

∂q
q̇ =

∂H

∂p

can be solved explicitly in terms of integrals.

Jacobi’s Theorem has proven itself to be one of the most powerful methods for solving Hamilton’s
equations of motion using exact integration. Using Jacobi’s Theorem, many problems have been completely
solved that have yet to be solved by other means [3].

Not every canonical transformation is free, however. Thus, the “type 1” generating function S1 will
not work. There are, however, a multitude of other types generating functions. For instance, the “type 2”
generating functions S2:

S2(q,P) = PQ+ S(q,p),

where Q = Q(q,P) and p = p(q,P). For S2, we have

p =
∂S2

∂q
Q =

∂S2

∂P
.
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Just as in the “type 1” case, we have a local condition on the determinant of the Hessian of S2. The identity
transformation q = Q, p = P is given by the “type 2” generating function

S2(q,P) = Pq.

Finally, consider a generating function that is close to the identity transformation (τ is “small”):

Sτ (q,P) = Pq+ τS(q,P; τ), (3.15)

where again Q = Q(q,P) and p = p(q,P). For this generating function,

p = P+ τ
∂S

∂q
Q = q+ τ

∂S

∂P
. (3.16)

Such a transformation is called an infinitesimal canonical transformation. This type of generating function
is used in the construction of symplectic integrators, as we will see in the next section.
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4 Symplectic Integrators
Symplectic integrators are numerical methods for approximating solutions to the equations of motion of

Hamiltonian mechanical systems. They are called symplectic because they preserve the symplectic structure
(up to machine precision). Symplectic integrators have been shown to be extraordinarily powerful in long-
time numerical integrations of Hamiltonian systems.

Consider a time independent Hamiltonian function H = H(q,p). Solutions to Hamilton’s equations of
motion (3.5) are canonical maps from (q,p) at time t = 0 to (Q,P) at time t = τ for any τ ∈ R. From
Theorem 3.2, we know that the symplectic structure on the phase space can be written as ω2 = dp∧dq. We
know that the solutions preserve the Hamiltonian (i.e. energy is conserved) since H is time independent. In
summary, exact solutions to time independent Hamiltonians

1. are exactly symplectic: dp ∧ dq = dP ∧ dQ

2. conserve the energy: H(q,p) = H(Q,P).

When developing numerical integration methods for Hamiltonian systems, we would like the numerical
method to obey those two properties of true solutions. Unfortunately, we cannot have both in any numerical
method; if we did, the method must necessarily give the flow of the exact solution (perhaps up to a
reparameterization of time) [8]. Nevertheless, we can develop numerical methods that preserve the symplectic
structure (again, up to round-off errors). Also, for arbitrarily many time steps, the errors in the Hamiltonian
are bounded (which generally does not occur for “standard” numerical integration methods) when a symplectic
integrator is used.

The methods included in this section were developed in the 1980’s and 1990’s. Since that time, these
methods have been improved (e.g. individual time stepping [12]) and other methods have been developed.
Still, the methods studied in this section are a modern application of the methods of classical mechanics.

4.1 Construction of Explicit Methods
As a first case, consider a time independent, separable Hamiltonian function H(q,p) = T (p) + V (q).

Hamilton’s equations of motion are

ṗ = −∂V

∂q
q̇ =

∂T

∂q
. (4.1)

Consider the infinitesimal canonical transformation given by the generating function (3.15):

Sτ = Pq+ τS(q,P), (4.2)

where τ > 0. From Section 3.5, we know

p = P+ τ
∂S

∂q
Q = q+ τ

∂S

∂P
. (4.3)

Our symplectic integrator should be a canonical transformation that moves the coordinates (q,p) at time
t = t0 forward in time to the new coordinates (Q,P) at time t = t0 + τ . We choose S(q,P) = T (P) + V (q)
so that the transformation coincides with the exact solution to (4.1) up to O(τ) (see [9] for more details on
this choice). We now have the mapping gτ (q,p) = (Q,P) given by

P = p− τ
∂V

∂q

Q = q+ τ
∂T

∂P
.

(4.4)
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Note that this transformation is consistent with the first-order approximation of (4.1). In the limit as
τ → 0, the transformation matches the Taylor series of (4.1), and this method said to be consistent.

If we break the solution time interval into an evenly spaced mesh tk and denote the approximation to
the coordinates (q(tk),p(tk)) at time t = tk by (qk,pk), then this simple, explicit symplectic integrator for
separable Hamiltonians is

pk+1 = pk − τ
∂V

∂q

∣∣∣∣
qk

qk+1 = qk + τ
∂T

∂p

∣∣∣∣
pk+1

.

(4.5)

Remark: The coordinates qk and pk are the numerical approximations to the exact solution coordinates
q(tk) and p(tk), respectively. It is common to denote the approximation to an exact quantity by another
symbol (usually a larger glyph). As this notation a bit cumbersome (but precise), we put some of the burden
of tracking the exact and approximate quantities on the reader.

The method (4.5) is know as symplectic Euler’s method, since it is first-order accurate, explicit, and
consists of only one stage. If the difference between the approximate solution (qk+1,pk+1) and the exact
solution, Taylor expanded about t = tk, is of order τN+1, we say the method is N th order accurate.

The reader might suspect that we can choose another Sτ so that the approximate solution matches the
exact solution up to O(τ2) or higher. Higher order methods usually consist of multiple stages (i.e. multiple
steps between tk and tk+1). We denote these intermediate times as tk,i. Similarly, we denote the approximate
solution at time t = tk,i as (qk,i,pk,i). Ruth found that the following two stage method is second-order
accurate [11]; we call this Ruth’s second-order method:

pk,1 = pk qk,1 = qk +
τ

2

∂T

∂p

∣∣∣∣
pk,1

pk+1 = pk,1 − τ
∂V

∂q

∣∣∣∣
qk,1

qk+1 = qk,1 +
τ

2

∂T

∂p

∣∣∣∣
pk+1

.

(4.6)

Note that we make the identifications pk = pk,0, pk+1 = pk,2, qk = qk,0, and qk+1 = qk,2 for the two
stage method. These generating function techniques work not only for explicit methods, but also for deriving
implicit methods, which will be handled in Section 4.4.

A more general iteration than (4.6) is the s-stage method

pk,i+1 = pk,i − diτ
∂V

∂q

∣∣∣∣
qk,i

qk,i+1 = qk,i + ciτ
∂T

∂p

∣∣∣∣
pk,i+1

.

(4.7)

The coefficients ci, di ∈ R, i = 1, ..., s are determined such that the method achieves the desired order using
s− 1 intermediate time steps. For a single stage method, the analysis is trivial. Determining the coefficients
for multi-stage methods can become prohibitively hard.

Written in terms of the ci and di, Ruth’s second-order method is given by

c1 =
1

2
d1 = 0

c2 =
1

2
d2 = 1.
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Ruth also found a three stage, third-order method given by the coefficients

c1 =
2

3
d1 =

7

24

c2 = −2

3
d2 =

3

4

c3 = 1 d3 = − 1

24
.

It is interesting to note that some of the intermediate steps move backward in time to achieve third order!
This is not a coincidence; every symplectic integrator of the form (4.7) of order at least three must have a
stage where ci < 0 and/or di < 0 [16]!

Remark: We will use Ruth’s second-order method (4.6) in Section 4.5. Although it is a simple, explicit
method, it is fast and accurate enough for a qualitative calculation of the orbits of the outer planets and
Pluto.

4.2 Higher Order Explicit Methods
Deriving equations to achieve higher order methods is a difficult procedure [4]. A Lie algebraic perspective

on multi-stage methods yields a different method for deriving the coefficients ci and di for certain types
of higher order methods. Following Yoshida, let z be the pair of coordinates z = (q,p) [16]. Hamilton’s
equations can be written using the Poisson bracket:

ż = {H(z), z},

where, in the coordinates (q,p), the Poisson bracket is

{F,H} =
∂F

∂p

∂H

∂q
− ∂F

∂q

∂H

∂p
.

Note that the possible difference in sign convention can be “fixed” by the ordering (q,p) versus (p,q).

Since the action of the Poisson bracket is just that of a first-order, linear, differential operator, we can
also write Hamilton’s equations as ż = LHz, where

LH =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
. (4.8)

Formally, the exact solution to Hamilton’s equations of motion at time τ is simply

z(τ) = eτLHz(0).

Remark: From Section 3.4 we know that both LT and LV are elements of the Lie algebra g of all Hamiltonian
vector fields on the phase space. The underlying Lie group G is, roughly, the set of all Hamiltonian phase
flows (diffeomorphisms) of the phase space. The exponential map exp : g → G takes the first-order, linear,
differential operator LH and returns the associated phase flow etLH .

If we still have a separable Hamiltonian H = T + V , then the operator LH also separates. We then have
the formal solution in terms of the non-commuting operators LT and LV :

z(τ) = eτ(LT+LV )z(0), (4.9)

where

LT =
∂T

∂p

∂

∂q
LV = −∂V

∂q

∂

∂p
.
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We already have (4.5), which approximates the flows eLT and eLV . We cannot simply apply such a
simple symplectic integrator, however. If we formally define the operator eLT+LV by its power series, we
have non-commuting operators LT and LV acting on each other. Therefore, we know

eLT+LV 6= eLT eLV ,

in general [16]. To find a computable method, we look for real coefficients ci and di such that

eτ(LT+LV ) =

s∏
i=1

eciτLT ediτLV +O(τN+1). (4.10)

Although (4.10) is written slightly differently, it is the same as the s-stage method (4.7) if we use the basic
symplectic method (4.5). Each term in the product of (4.10) is a canonical transformation, so the product
of the mappings must also be canonical (just like (4.7)). The method (4.10) is not only computable, but
gives rise to an explicit method for separable Hamiltonians.

Before we attempt to find any such ci and di, we present the Baker-Campbell-Hausdorff (BCH) formula.
Note that while we only consider the case of the Lie algebra of Hamiltonian vector fields, the BCH formula
exists for other Lie algebras. Let X and Y be elements of a Lie algebra g. In general, X and Y will not
commute, so let their commutator be [X,Y ] = XY −Y X. The BCH formula allows one to write the product
eXeY as a single exponential

eXeY = eZ ,

where

Z =X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) +

1

24
[X, [Y, [X,Y ]]]

− 1

720
([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X,Y ]]]])

+
1

360
([Y, [X, [X, [X,Y ]]]] + [X, [Y, [Y, [Y,X]]]])

+
1

120
([X, [X, [Y, [Y,X]]]] + [Y, [Y, [X, [X,Y ]]]])

+ ... .

(4.11)

Consider the second-order method given by (4.6). Written in the form of (4.10) and denoted by S2(τ),
this method is

S2(τ) = e
τ
2LT eτLV e

τ
2LT .

If we apply the BCH formula twice, we find the method takes the form [15]

S2(τ) = eτα1+τ3α3+τ5α5+..., (4.12)

where

α1 = LT + LV α3 =
1

24
(2[LV , [LV ,LT ]]− [LT , [LT ,LV ]])

7

5760
[LT , [LT , [LT , [LT ,LV ]]]] + ... .

We note that the method (4.6) is symmetric and time reversible:

S(−τ)S(τ) = S(τ)S(−τ) = identity.
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Note that there are no even powers of τ in (4.12). Yoshida showed that every symplectic integrator of
the form (4.10) that is time reversible has no even powers of τ when expanded as

S(τ) = eτβ1+τ2β2+τ3β3+τ4β4+τ5β5+....

In terms of the βj , we must have β2 = β4 = ... = 0. Note that these powers of τ give the order of the method:
for consistency, we must have β1 = 1; the order of the method (plus one) is given by the next non-zero βi.
Thus, time reversible, symmetric methods are always of even order.

Using Ruth’s second-order, symmetric, time reversible method given by (4.6), we can build a fourth-order
method by finding coefficients x1, x2 ∈ R such that the method given by

S4(τ) = S2(x2τ)S2(x1τ)S2(x2τ),

is fourth-order accurate. Using the BCH formula, S4(τ) can be written as a single exponential:

S4(τ) = eτ(x1+2x2)α1+τ3(x3
1+2x3

2)α3+τ5(x5
1+2x5

2)α5+....

The condition for S4(τ) to be fourth-order accurate is

x1 + 2x2 = 1 x3
1 + 2x3

2 = 0.

In general, if a symmetric, time reversible method of order 2N is known, then the method given by

S2N+2(τ) = S2N (x1τ)S2N (x2τ)S2N (x1τ)

is of order 2N + 2 if

x1 + 2x2 = 1 and x2N+1
1 + 2x2N+1

2 = 0

are satisfied. The real solution to these equations is

x1 = − 21/(2N+1)

2− 21/(2N+1)
x2 =

1

2− 21/(2N+1)
.

The above symmetric, time reversible methods can easily be of high order, but at the expense of a large
number of function evaluations. Using a similar approach, Yoshida found sixth and eighth order methods
that use fewer function evaluations than the standard composition method [15]. In the same year, Suzuki
developed a similar “fractal” composition method with much fewer function evaluations [13]. The algebraic
manipulations involved in using the BCH formula with many terms is quite cumbersome. Simply deriving
equations for coefficients becomes very difficult for high order methods [4].

4.3 Backward Error Analysis
By starting from the generating function (4.2) and composing the resulting symplectic integrators, we can

develop higher order symplectic integrators. We briefly mentioned that the Hamiltonian is not and cannot
be conserved by symplectic integrators [8]. However, symplectic integrators bound the errors in (smooth)
Hamiltonians. To understand why this happens, we will turn to backward error analysis.

Turning away from Hamiltonian systems for a brief moment, consider the single ODE (initial value
problem)

ẋ = f(x) x(0) = x0.
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Suppose we also have some numerical method Lτ (xk) that produces the approximations

xk+1 = Lτ (xk)

of the original system at the time t = tk+1. The standard forward error analysis of the method consists of
studying the local errors x1 − Lτ (x0) and global errors xk − Lkτ (x0). The idea of a backward error analysis
is to search for a modified equation ξ̇ = fτ (ξ) of the form

ξ̇ = fτ (ξ) = f(ξ) + τF2(ξ) + τ2F3(ξ) + ... , (4.13)

where xk = ξ(tk) [9]. The next step is to study the differences between the flows induced by f(x) and fτ (x).
It is common to truncate the series in (4.13) and so we will not worry about its convergence. The search
for a modified equation is also common in the analysis of finite difference methods for partial differential
equations (e.g. Beam-Warming and Lax-Friedrichs).

Suppose we know that x(t0) = ξ(t0) = ξ at some time t = t0. We can expand the solution to the modified
equation (4.13) at t = t0 into a Taylor series about t0:

ξ(t0 + τ) = ξ + τ
(
f(ξ) + τF2(ξ) + τ2F3(ξ) + ...

)
τ2

2

(
f ′(ξ) + τF ′

2(ξ) + τ2F ′
3(ξ) + ...

) (
f(ξ) + τF2(ξ) + τ2F3(ξ) + ...

)
+ ... .

(4.14)

We are searching for the (smooth) functions Fi such that the numerical method Lτ , which we assume can
be expanded as

Lτ (x) = x+ τf(x) + τ2G2(x) + τ3G3(x) + ... , (4.15)

“exactly” solves the modified equation (4.13) (i.e. xk = ξ(tk)). The coefficients of the powers of τ in (4.14)
and (4.15) must match, which give the following recurrence relations for the Fi in terms of the method Lτ :

F2 = G2 −
1

2
f ′f

F3 = G3 −
1

2
(f ′F2 + F ′

2f)−
1

6
(f ′′ff + f ′f ′f)

...

These recurrence relations give us exactly the modified equation for which we were searching. Through
various numerical experiments, Hairer shows that symplectic Euler and various other numerical integration
methods approximate the exact solutions to their (truncated) modified equations very well [9]. He also
notices that the lowest order of τ in the modified equation yields exactly the order of the method and proves
the following theorem.

Theorem 4.1: Suppose the method xk+1 = Lτ (xk) is of order N so that

Lτ (x) = gτ (x) + τN+1δN+1(x) +O(τN+2),

where gt denotes the exact flow of ẋ = f(x) and τN+1δN+1(x) is the leading term of the local truncation
error. The modified equation satisfies

ξ̇ = f(ξ) + τNFN+1(ξ) + τN+1FN+2(ξ) + ...

where ξ(t0) = x(t0) and FN+1 = δN+1.

This theorem shows us that the more accurate the method, the “closer” the modified equation is to the
actual equation we are trying to solve.
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All of the above work was for a general, sufficiently differentiable function f . We can apply a backward
error analysis to Hamilton’s equations of motion to find a set of modified equations of motion. It turns out
that we can do even better; we can (at least locally) find a Hamiltonian function that gives us the modified
equations of motion. To to this, we must truncate the modified equation at the rth term. This gives us with
a modified Hamiltonian function H [r] of the form

H [r] = H + τNHN+1 + ...+ τ r−1Hr. (4.16)

We can always find a globally defined, truncated, modified Hamiltonian in some open subset U of phase space
(on which the original Hamiltonian function is defined). The constructive proof of this assertion gives us a
method for finding generating functions of the form that are used in the next section on implicit symplectic
integrators [9].

We are now in a position to state a theorem on the boundedness of errors in the original Hamiltonian
function H. The theorem and a sketch of the proof are from [9].

Theorem 4.2: Consider a Hamiltonian mechanical system with a smooth Hamiltonian function H : U → R,
configuration space Mn, and U ⊂ T ∗Mn. Apply a symplectic integrator Sτ of order N with step size τ and
assume the truncated, modified Hamiltonian H [r] is globally defined on U . If the numerical solution zk stays
in the compact set K ⊂ U , then we have asymptotically for τ → 0

H [r](zk) = H [r](z0) +O(tτ r)

H(zk) = H(z0) +O(τN )

over time intervals of size t = kτ ≤ CτN−r.

Proof: Let gtr be the flow of the truncated, modified Hamiltonian. The effect of the truncation is
that ||zk+1 − gτr (zk)|| ≤ Cτ r+1 for some norm equivalent to the 2-norm. Let the Lipschitz constant
KL ∈ R be the minimum value, independent of τ , such that

|H(x)−H(y)| ≤ KL||x− y|| ∀x,y ∈ K.

The error in H [r] at time t = tk is

H [r](zk)−H [r](z0) =

k−1∑
j=0

H [r](zj+1)−H [r](zj).

Since gτr is the exact flow of H [r] we know it conserves H [r] exactly. Namely, we have H [r](gτr (zj)) = H [r](zj)
at each time tj. The summand becomes

H [r](zj+1)−H [r](gτr (zj)) ≤ KL||zj+1 − gτr (zj)||.

Now we have

H [r](zk)−H [r](z0) ≤
k−1∑
j=0

KLCτ r+1 = O(kτ r+1) = O(tτ r).

Because HN+1(z) + ... + τ r−N−1Hr(z) is uniformly bounded, independent of τ and r, on K, and
N ≤ r,

H(zk)−H(z0) = O(τN ).
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Essentially, Theorem 4.2 states that if we apply an N th order symplectic integrator to a smooth Hamiltonian
that has motions restricted to a compact domain of phase space, the error in the modified Hamiltonian will
grow linearly with time, but the error in the true Hamiltonian will oscillate inside of a constant bound. It
is for this reason that symplectic integrators are said to nearly conserve the Hamiltonian. Also note that
the error in the true Hamiltonian will oscillate inside of its bound for all time (disregarding numerical errors).

The property of long-time Hamiltonian error boundedness is one of the chief attractions to symplectic
integrators; symplectic integrators very nearly obey both of the properties of exact solutions listed at the
beginning of this section. Kinoshita applied various symplectic integrators and a classical fourth-order Runge-
Kutta (RK) method to the Kepler problem for both short and long-time spans. As one might expect, given
Theorem 4.2, the symplectic integrators performed much better than the Runge-Kutta method for long time
spans. However, for shorter time spans, the Runge-Kutta method produced more accurate results [10].

Yoshida also compared a symplectic method and Runge-Kutta method to the Kepler problem [16]. It is
quite common to use an adaptive step size in numerical integration to obtain better accuracy (perhaps set
by some absolute or relative tolerance). Yoshida demonstrated how (naively) using an adaptive time step
destroys the Hamiltonian error boundedness of the symplectic integrator; as is expected, the same (naive)
adaptive time stepper improves the accuracy of the classical Runge-Kutta method. At least in the context
of gravitational n-body problems with a large central mass, a working method of individual time stepping
has been introduced [12].

4.4 Construction of Implicit Methods
In many Hamiltonian systems, one cannot separate the Hamiltonian function as H(q,p) = T (p)+V (q).

None of the previously considered (explicit) methods will work. However, using the same generating function
idea with generating function (4.2), one can derive implicit symplectic integrators. The analog of the
symplectic Euler method, which is generically called the one step method, is given by the transformation

pk+1 = pk − τ
∂H

∂q

∣∣∣∣
(qk,pk+1)

qk+1 = qk + τ
∂H

∂p

∣∣∣∣
(qk,pk+1)

.

(4.17)

Note that in (4.17), one can solve the evolution for pk+1 using a simple fixed-point iteration (or more
sophisticated methods), and then explicitly find qk+1 once pk+1 is known. This one step method gives a
first-order, implicit method. Using a backward error analysis, one can show that this method, if it satisfies
the conditions of Theorem 4.2, nearly conserves the Hamiltonian function [16].

If we instead use the infinitesimal generating function

Sτ (q,P) = qP+ τH +
τ2

2

∂H

∂P

∂H

∂q
,

where H = H(q,P), we arrive at the second-order, one stage, implicit method

pk+1 = pk − τ
∂H

∂q

∣∣∣∣
(qk,pk+1)

− τ2

2

(
∂2H

∂q∂p

∂H

∂q
+

∂H

∂p

∂2H

∂q2

)∣∣∣∣
(qk,pk+1)

qk+1 = qk + τ
∂H

∂p

∣∣∣∣
(qk,pk+1)

+
τ2

2

(
∂2H

∂p2

∂H

∂q
+

∂H

∂p

∂2H

∂p∂q

)∣∣∣∣
(qk,pk+1)

.

(4.18)

Again, we note that the evolution of pk+1 is the implicit part of the integrator. We can solve for pk+1 using
any one of a variety of methods, and once pk+1 is known, qk+1 is given explicitly by its evolution equation.
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To obtain higher order symplectic integrators, one must find a generating function Sτ of the form of (4.2)
such that the transformation given by (4.3) agrees with the Taylor expansion of the solution up to τN .
Simply finding the generating function can be quite difficult; deriving the symplectic integrator becomes
a “mess” of derivatives and algebra; and finally coding the integrator becomes extraordinarily difficult.
Channell and Scovel developed a preprocessor to write FORTRAN code for up to sixth order methods
derived from generating functions [4].

Another implicit, second-order method is the Störmer-Verlet method, which is given by

pk,1 = pk − τ

2

∂H

∂q

∣∣∣∣
(qk,pk,1)

qk+1 = qk +
τ

2

(
∂H

∂p

∣∣∣∣
(qk,pk,1)

+
∂H

∂p

∣∣∣∣
(qk+1,pk,1)

)

pk+1 = pk,1 −
τ

2

∂H

∂q

∣∣∣∣
(qk+1,pk,1)

.

(4.19)

Note that we must solve for pk,1, then solve for qk+1, and then pk+1 is given explicitly in terms of pk,1 and
qk+1. This method was successfully used in the study of the Fermi-Pasta-Ulam problem in the early 1950’s.
The Fermi-Pasta-Ulam problem has connections to the Korteweg-de Vries equation, appears in the study of
shallow water waves.

We now consider Runge-Kutta methods. For general ODE initial value problems, Runge-Kutta methods
have become very popular, and are implemented in many software packages. These methods can perform
quite well if they are coupled with adaptive time stepping, paired with a higher order Runge-Kutta method
(e.g. Dormand-Prince pairs), etc. In general, an s-stage Runge-Kutta method for the problem ẋ = f(t, x) is
of the form

xk+1 = xk + τ

s∑
k=1

biki ki = f

t0 + ciτ, xk + τ

s∑
j=1

aijkj

 .

In order to have a consistent method, we must have ci =
∑s

j=1 aij . It is common to list the aij , bi, and ci
in a Butcher table:

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

(4.20)

Note that the Runge-Kutta method given by (4.20) is explicit if A is strictly lower triangular, where A is the
matrix of aij . When A is not strictly lower triangular, the method is implicit. Also note that bj 6=

∑s
i=1 aij

in general.

Just as the ci and di of (4.10) are parameters of the method, the aij and bj are parameters of a Runge-
Kutta method. Similarly, there are consistency restraints on the aij . The parameters that remain are used
to build a method with certain properties, such as the order of accuracy of the method, its stability region,
possible pairing with a slightly different Runge-Kutta method (e.g. Dormand-Prince pairs).

A further desirable property that we might want in a Runge-Kutta method is that the method preserve
the symplectic structure of a Hamiltonian mechanical system. However, Runge-Kutta methods do not in
general preserve the symplectic structure and so are not in general symplectic integrators. Therefore, instead
of being bounded, the error in the Hamiltonian grows in time [10]. Symplectic Runge-Kutta methods do
exist, and there is a formula used to determine if a Runge-Kutta method is symplectic [9].
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Theorem 4.3: If the coefficients of a consistent Runge-Kutta method satisfy

biaij + bjaji = bibj ∀i ∀j,

then the method is symplectic.

A simple, second-order, symplectic Runge-Kutta method is given by the following Butcher table:

1
2

1
2

1

The above method is called the implicit midpoint method. A fourth-order symplectic Runge-Kutta method
is given by:

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

Remark: Perhaps the reader who is already quite familiar with Runge-Kutta methods will recognize this
as the fourth-order collocation method based on the points of Gauss-Legendre quadrature (i.e. Gaussian
quadrature using Legendre polynomials). The Gauss-Legendre method based on s points has order 2s and is
symplectic. However, these methods aren’t regularly used due to prohibitive computational cost [9].

Finally, we turn our attention to a motivating example for studying Hamiltonian mechanics and symplectic
integrators: the motion of the outer planets and Pluto for one billion years!

4.5 Example: The Outer Planets for One Billion Years
The gravitational N -body problem is a classic problem in mechanics. In this example, we study the

motion of N − 1 massive particles interacting via Newton’s law of universal gravitation; one of the masses
is significantly larger the rest. The method that we briefly describe was developed by Wisdom and Holman
as part of Holman’s dissertation [14]. Wisdom and Holman successfully used their new symplectic map to
confirm and extend the integrations performed with the Digital Orrery [1].

In (heliocentric) Cartesian coordinates, the Hamiltonian for the N -body problem is

H =

N−1∑
i=0

||pi||2

2mi
−
∑
i<j

Gmimj

rij
, (4.21)

where ||pi|| is the 2-norm of the ith momentum, mi is the mass of the ith particle, G is Newton’s gravitational
constant, and rij = ||xi −xj ||, and xi is the position of the ith particle. One approach to solving Hamilton’s
equations of motion for the Hamiltonian (4.21) would be to apply a symplectic integrator directly to the
problem. This is a good test for the performance of a symplectic integrator, but by changing coordinates,
Wisdom and Holman were able to utilize the integrability of the Kepler problem (i.e. the two body problem)
to greatly improve the speed and accuracy of their integrations.
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A Hamiltonian function is called Keplerian if it can be written as

HK =
||p||2

2m
− GMm

||r||
or a sum of Keplerian Hamiltonians. The Hamiltonian (4.21), as a whole, is not Keplerian, although we can
separate the Keplerian portions of the Hamiltonian; if we were to do so, the remaining terms would would still
make up a significant portion of the total Hamiltonian. If we write the N -body Hamiltonian in the well known
Jacobi coordinates, the Hamiltonian becomes the sum of Keplerian Hamiltonians (in Jacobi coordinates)
plus much smaller interaction terms (conveniently written in mixed Cartesian and Jacobi coordinates).

Let the first Jacobi coordinate be the center of mass x′
0. The remaining N − 1 Jacobi coordinates are

x′
i = xi −Xi−1,

where Xi is the center of mass of the particles with with indexes up to i:

Xi =
1

ηi

i∑
j=0

mjxj ηi =

i∑
j=0

mj .

Note that XN−1 = x′
0. When deriving the Jacobi requirements, we require that the transformed kinetic

energy portion of the Hamiltonian be a diagonal sum of squared-norms of the momenta; that is, we do not
want cross-terms between the momenta. We also require that p′

i = m′
iv

′
i, where v′

i is the time derivative of
x′
i and the new mass factors are m′

i = ηi−1mi/ηi for 1 ≤ i ≤ (N − 1) and m′
0 = ηN−1. Note that ηN−1 = M

is the total mass of the system.

The transformation from Jacobi coordinates to Cartesian coordinates is given by

xi = x′
i +
∑
j<i

mjx
′
j

ηj
.

The transformation from Cartesian coordinates to Jacobi coordinates can be written as a matrix transformation,
which will inherently depend on how the positions are stored in the code. The inverse transformation can
then be realized with a linear system solver. We index the particles in order of increasing distance from the
center of mass with one exception; we put Pluto in the first index after the Sun. This reduces high frequency
oscillations in the Jacobi coordinates of Pluto due to the motion of planets interior to Pluto.

In mixed Cartesian and Jacobi coordinates, the N -body Hamiltonian becomes

H =
||p′

0||2

2M
+

N−1∑
i=1

(
||p′

i||2

2m′
i

− Gmim0

ri0

)
−
∑

0<i<j

Gmimj

rij
.

The second term of the Hamiltonian is “half” of a Keplerian Hamiltonian in Jacobi coordinates. If we add
and subtract the “missing” quantity

N−1∑
i=1

Gmim0

r′i
,

where r′i = ||x′
i||, the Hamiltonian becomes

H =
||p′

0||2

2M
+

N−1∑
i=1

(
||p′

i||2

2m′
i

− Gmim0

r′i

)
+

N−1∑
i=1

(
Gmim0

r′i
− Gmim0

ri0

)
−
∑

0<i<j

Gmimj

rij
. (4.22)
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The N -body Hamiltonian is now of the form

H = HKepler +HInteraction,

where HInteraction << HKepler.

Up to this point, no approximations have been made, and the Hamiltonian (4.22) is equivalent to (4.21).
The motions induced by HInteraction are highly oscillatory and have a small amplitude. By the averaging
principle, which essentially states that the long term motion of a Hamiltonian system is not greatly affected
by highly oscillatory terms (which tend to average to zero), Wisdom and Holman argue that the modified
Hamiltonian

HMap = HKepler + 2πδ2π(Ωt)HInteraction (4.23)

produces nearly the same motion as (4.21) [14, 3]. Ω is the constant mapping frequency, and is chosen to be
on the order of the orbital frequencies. The 2π periodic δ “function” comes about by adding in progressively
higher frequency cosine terms [14]:

1

2π

∞∑
n=−∞

cos(nt) =
∞∑

n=−∞
δ(t− 2πn) = δ2π(t).

The mapping Hamiltonian (4.23) has a particularly simple interpretation: for the times when the delta
“function” is “off”, the system evolves according to only HKepler; for the times when the delta “function” is
“on”, the system receives a “kick” from the terms in HInteraction with no contributions from HKepler. The
Keplerian Hamiltonian is separately integrable, and can be handled with its own method; the interaction
terms can similarly be handled with their own numerical method. The whole integration method becomes
“evolve according to HKepler for some amount of time”, “evolve according to HInteraction for some amount of
time”, and repeat.

Let z′ = (x′,p′) be the pair of generalized coordinates and momenta in Jacobi coordinates. Let LK

and LI be the operators based on the Kepler and interaction Hamiltonians such that z′(τ) = eτLKz′(0)
and z′(τ) = eτLIz′(0) give the exact flows for the Kepler and interaction Hamiltonians, respectively. The
problem of integration is now very similar to that of Section 4.2: we can split the Hamiltonian and evolve
each part forward (and sometimes backward, depending on the method!) in time by itself.

Combining the Kepler and interaction mappings together in the form of (4.10), we have a symplectic
integrator given by

eτ(LK+LI) =

s∏
i=1

eciτLKediτLI +O(τN+1).

We can choose any of the high order integrator coefficients discussed in Section 4.2 and the references
therein, but Wisdom and Holman suggest that using Ruth’s second-order method (4.6) is good enough for
a “qualitatively accurate” integration. Thus, we used Ruth’s second-order method in all of our integrations.

Instead of integrating the Keplerian motion using derivatives of HKepler like one might normally do with
a symplectic integrator, we can efficiently integrate the motion “exactly” using the f and g functions of
orbital mechanics [5, 6]. Note that we do this entirely in Jacobi coordinates with the appropriate masses
and gravitational parameter (the Jacobi version of Gm0); there is no need to compute all of the orbital
elements at each time step! Efficient algorithms for moving Keplerian orbits forward in time using the f and
g functions can be found in [6].

The interaction Hamiltonian is handled in the usual manner. Therefore, we need to know the derivatives
of HInteraction with respect to the Jacobi coordinates x′

i to update the momenta p′
i. The necessary derivatives

of HInteraction are given in [12].
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Initial conditions for the Solar system were taken from Applegate et al. [1]; these are the same initial
conditions used by Wisdom and Holman in their integrations. We integrated the motion of the Sun, Jupiter,
Saturn, Uranus, Neptune, and Pluto. Since Jupiter has the shortest period, its orbit restricted our time step
to one year. The Digital Orrery integrations used a different numerical method which required a time step
of 40 days [1]; it is no wonder that Wisdom and Holman’s symplectic mappings (with a low order symplectic
integrator) were significantly faster than those of Applegate et al. The orbits of the Sun and outer planets
were integrated for one billion years; positions and velocities of the planets and Sun were recorded every
1000 years.

Figure 1 shows Pluto’s orbital element h = e sin(ω+Ω) and the relative error in the Hamiltonian function
(4.21). Initial conditions were chosen to be slightly different than Applegate’s initial conditions. The plot of h
over one billion years is very nearly the same as Applegate’s and Wisdom and Holman’s, but there are
slight differences. The plot of the relative error in the Hamiltonian function clearly shows the constant
bound (recall Theorem 4.2). The relative error is bounded on the order of 10−5, which matches Wisdom
and Holman’s results [14].

Both Applegate et al. and Wisdom found that the modulation of h had a period of about 137 Myr and
a basic oscillation period of 3.69 Myr. In our integrations, we found that the basic oscillation period was
3.69 ± 0.01 Myr; the longer period modulation had a period of 133 ± 10 Myr. The errors given here are
rough estimates to impart on the reader a sense of the width of the peak in the power spectrum of h.

Figure 2 shows Pluto’s h and the relative error in the Hamiltonian for an integration starting with initial
conditions based on Jet Propulsion Laboratory Development Ephemeris 200 (DE 200). These initial orbits
of the Sun, outer planets, and Pluto are not as close to those used by Applegate as the initial conditions used
to create Figure 1. The slight differences in the initial conditions manifests itself as the differences between
Figure 2 and Figure 1. Again, the relative error in the Hamiltonian is bounded on the order of 10−5.

For the different initial conditions, we found the basic oscillation period to be 3.68±0.01 Myr. The larger
modulation period was not very well defined in the power spectrum, as we expect from Figure 2; however,
there was a wide peak in the spectrum from 130 Myr to 170 Myr.

It is quite clear from the figures that the error in the Hamiltonian is bounded for at least one billion time
steps. We could use a more accurate symplectic integrator for the HInteraction term, which would decrease
the bound for the errors in the Hamiltonian. Integrations of the Solar system modeled as a Hamiltonian
mechanical system are not usually carried past one billion years due to the accumulation of non-gravitational
and non-conservative forces.
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Figure 1: Orbital element h and relative error in Hamiltonian for initial conditions very close to Wisdom
and Holman’s.
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Figure 2: Orbital element h and relative error in Hamiltonian for initial conditions not as close to Wisdom
and Holman’s.
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