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INTRODUCTION
The N -body problem is the problem of

predicting the motion of N point masses that
interact gravitationally. By casting the problem
in the framework of Hamiltonian mechanics,
numerical integration methods can be derived that
have many desirable properties. One of these
methods was developed by Wisdom and Holman
to predict the orbits of the outer planets for one
billion years [2].

NEWTONIAN MECHANICS
Study forces on particles:

miẍi = Fi(xi, ẋi, t).

Equations of motion are second order ODE that
describe the motion of the particles xi. Particles
have positions in the n-dimensional configuration
space Mn. Conservative forces can be found from
a potential:

Fi = − ∂

∂xi
V (x1, ...,xn).

The N -body potential is

V (x1, ...,xn) = −
∑
i<j

Gmimj

rij
,

where rij = ||xi − xj ||2.

DIFFERENTIAL FORMS

In coordinates xi, a vector ξ is given by
components ξi. A differential 1-form ω1 =∑n

j=1 ajdx
j acts on ξ and returns a scalar:

ω1(ξ) =
n∑

j=1

ajdx
j(ξ) =

n∑
j=1

ajξ
j

Forms can be constructed with the exterior
product:

α1 ∧ β1 = −β1 ∧ α1(
λ1α

1 + λ2β
1
)
∧ ω1 = λ1α

1 ∧ ω1 + λ2β
1 ∧ ω1

The exterior derivative of a 1-form ω1 is

dω1 =
n∑

j=1

daj ∧ dxj ,

where daj is the total derivative of aj :

daj =
n∑

k=1

∂aj
∂xk

dxk

PHASE SPACE

A symplectic structure on M2n is a closed, non-
degenerate 2-form ω2:

dω2 = 0

∀ξ 6= 0 ∃η 3 ω2(ξ,η) 6= 0

The pair (M2n, ω2) is called a symplectic
manifold. The phase space M2n of a mechanical
system is the space of generalized momenta and
coordinates: (p,q). The phase space is naturally
a symplectic manifold; the natural symplectic
structure on the phase space is

ω2 =
n∑

j=1

dpj ∧ dqj .

A map gt : (p,q) → (p′,q′) is canonical if and
only if it preserves the symplectic structure ω2:

n∑
j=1

dp′j ∧ dq′j =
n∑

j=1

dpj ∧ dqj

Since gt preserves ω2, it also preserves ω2n,
which is the volume element of phase space.

HAMILTONIAN MECHANICS
Hamiltonian mechanics is geometry in phase

space [1]. The symplectic structure provides a
natural isomorphism between tangent vectors
and 1-forms; tangent vectors are naturally in a
one-to-one correspondence with first-order, linear
differential operators and solutions to systems of
first-order ODE.

Newton’s n second-order equations of motion
are equivalent to Hamilton’s 2n first-order
equations of motion

ṗ = −∂H

∂q
q̇ =

∂H

∂p
,

where H(p,q) = T (p,q) + V (q) is the Hamiltonian
(for autonomous, conservative forces).

Various techniques have been developed to
find canonical transformations g : (p,q) → (p′,q′)
that result in easily integrable equations of
motion. These techniques are also used to
find transformations that are useful for building
numerical methods.

SYMPLECTIC MAPS
Solutions to Hamilton’s equations of motion

form a phase flow; the symplectic structure is
preserved by this flow, and the Hamiltonian H is
conserved. We would like a numerical integration
method that preserves the symplectic structure.

Consider the one-dimensional harmonic
oscillator

H(p, q) =
p2

2
+

q2

2
,

with exact solution moved forward ∆t(
p′

q′

)
=

(
cos(∆t) − sin(∆t)
sin(∆t) cos(∆t)

)(
p
q

)
.

This transformation preserves ω2 : dp′ ∧ dq′ =
dp ∧ dq.

Consider forward Euler with time step ∆t:(
p′

q′

)
=

(
1 −∆t
∆t 1

)(
p
q

)
Now we have dp′ ∧ dq′ = (1 + (∆t)2)dp ∧ dq. This
transformation is not canonical, and the energy
grows with (1 + (∆t)2)!
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HIGHER-ORDER METHODS

For a separable Hamiltonian
H(p,q) = T (p) + V (q), a first-order symplectic
integrator is

q′ = q+∆t
∂T

∂p

∣∣∣∣
p=p

p′ = p−∆t
∂V

∂q

∣∣∣∣
q=q′

This transformation preserves the symplectic
structure, but the error in H(p′,q′) is only bounded
by something O(∆t).

We can build higher-order methods by
composing these first-order maps in a certain way.
Define

LHf =
d

dt

∣∣∣∣
t=0

f(gtH(p(t),q(t))).

For some function f , the flow gtH advances f in
time:

f(p,q)
∣∣
t=t0+∆t

= e∆tLHf(p,q)
∣∣
t=t0

We can take f to be a coordinate function,

q(t+∆t) = e∆tLHq(t).

Since H = T + V , we have LH = LT + LV , and
e∆tLH = e∆tLT+∆tLV . We seek ci, di ∈ R such that

e∆t(LT+LV ) =

k∏
i=1

eci∆tLT edi∆tLV + o((∆t)p+1).

The mapping is now the succession of mappings

qi = qi−1+ci∆t
∂T

∂p

∣∣∣∣
p=pi−1

pi = pi−1−di∆t
∂V

∂q

∣∣∣∣
q=qi

.

A second order method is c1 = c2 = 1/2,
d1 = 0, d2 = 1; this method is used in the N -body
simulation.

N-BODY MAPS
In heliocentric Cartesian coordinates the N -

body Hamiltonian, dominated by a large, central
mass, is

H =

N∑
i=1

p2i
2mi

−
∑
i<j

Gmimj

rij
.

In Jacobi coordinates, the Hamiltonian is of the
form H = HKepler +HInteraction,

where HInteraction << HKepler.

The mapping Hamiltonian

HMap = HKepler + 2πδ2π(Ωt)HInteraction,

where δ2π is the 2π periodic δ distribution and
Ω is the mapping frequency, replaces the high-
frequency interaction terms with other (more
manageable) high-frequency terms. The mapping
operations are then evolution under only HKepler

and evolution under only HInteraction. HKepler

is handled (“exactly”) by standard celestial
mechanics techniques; HInteraction is handled by
symplectic integrators.


